
L A R G E G R O U P G A M E S W I T H A M O T I O N -
A N D O R I E N TAT I O N - S E N S I N G G A M E

C O N T R O L L E R

ilham abiyasa suhardi

Master of Science

Digital Media
Universität Bremen

August 2008

Ilham Abiyasa Suhardi: Large Group Games with a Motion- and Orientation-
Sensing Game Controller, Master of Science, © August 2008

supervisors:
Prof. Jörn Loviscach
Prof. Jürgen Friedrich

To my parents,

who always lovingly support my journey in life.

To my wife,

who has always been the source of my inspiration.

A B S T R A C T

Large group gaming can be described as a gaming activity played by
a group of people gathering at a certain place. In this project, group
game is defined as a big size video game played by hundreds of play-
ers. I would like to introduce a large group gaming utilizing the Wii
Remote, a wireless game controller from Nintendo Wii. The controller
is equipped with a motion and infrared sensor allowing the players
to control the game by using their hand gestures or pointing at the
screen.

The research goal can be formulated into three questions: (1) How
can a system support a large number of Wii Remotes? (2) What kind of
possible interaction can be done using the Wii Remote in group gam-
ing? (3) How does the user perform using those interaction methods?

To address these questions, a group game prototype is developed.
The system consists of a game server and several input clients which
connect the Wii Remotes. Several playtests are done using the Wii Re-
mote as a pointing device, a motion sensing controller, and an ordinary
gamepad.

Keywords: Wii remotes, Wiimote, large group interaction, large group
gaming, game design, motion sensor, pointing device, video game in-
teraction.

v

A C K N O W L E D G M E N T S

This thesis would not have been possible without the support of many
people. I wish to express my gratitude to my first supervisor, Prof.
Joern Loviscach who was abundantly helpful and offered invaluable
assistance, support and guidance.

I am thankful to my second supervisor, Prof. Juergen Friedrich, for
his generous assistance during this time and also previous project.

Special thanks to all my friends from Master of Digital Media Bre-
men class 2004-2007, especially the Stammtisch group.

I would like also to thank Marion Wittstock for her guidance and
help during my study in Bremen.

Finally, I take this opportunity to express my profound gratitude to
my beloved wife and parents for their moral support and patience.

vii

C O N T E N T S

1 Introduction 1

1.1 Large Group Gaming 1

1.2 Motivation 2

1.3 System Overview 2

2 Background 5

2.1 Related Work 5

2.1.1 Cinematrix Interactive Entertainment System 5

2.1.2 Maynes-Aminzade’s Work 7

2.1.3 Disposable Wireless Device for Group Musical
Interaction 8

2.2 Wii Remote 10

2.2.1 Nintendo Wii 11

2.2.2 Capability 11

2.2.3 Wii Remote in Commercial Games 12

2.2.4 Wii remote as an input device 14

2.3 Projects using Wii Remote 15

2.3.1 Percussion project by Belcher 15

2.3.2 Expressive Percussion Instrument 15

2.3.3 Pinocchio: Conducting a virtual symphony or-
chestra 17

2.3.4 WiiArts 17

2.3.5 Johnny Chung Lee’s Wiimote Projects 18

3 Technical Issues 21

3.1 Bluetooth Limitation 21

3.2 Connecting More Wii Remotes 22

3.2.1 Pairing the Wii Remotes 23

3.2.2 Wiimote Programming Library 23

3.3 Wii Remote Motion and Tilt Sensor 24

3.4 Wii Remote Infrared Sensor 25

3.5 Sensor Bar Modification 27

3.6 System Architecture 28

3.6.1 Input Client 28

3.6.2 Game Server 29

3.6.3 Stage Installation 30

4 Game and Interaction Design 33

4.1 Game Idea 33

ix

x Contents

4.2 Target Audience 33

4.3 Game Mechanic 34

4.4 The Game Objects 35

4.4.1 The Game Character 35

4.4.2 Game Item and Area 36

4.4.3 The Game Objects Proportion and Visualization 36

4.5 Interaction Design using Wii Remote 37

4.5.1 Pointing 38

4.5.2 Tilting 40

4.5.3 Gamepad 42

4.6 Group Mode 43

4.7 Other Game Variations 45

5 Implementation 47

5.1 Input Client 47

5.1.1 Hardware Specification 47

5.1.2 Software Specification 48

5.1.3 Implemented Features 48

5.1.4 Connecting Wii Remotes 49

5.1.5 Wii Remote and Input Client Identification 50

5.1.6 Network Connection 51

5.2 Game Server 52

5.2.1 Hardware Specification 52

5.2.2 Software Specification 54

5.2.3 Implemented Features 54

5.2.4 Game Objects 55

5.2.5 Game Server Modules 57

6 Testing and Evaluation 61

6.1 Testing Goal 61

6.2 Methodology 62

6.3 Testing Environment 62

6.3.1 Audience 62

6.3.2 Hardware Settings 63

6.3.3 Input Clients Set Up 63

6.4 Testing the Input Client 64

6.4.1 Pairing Several Wii Remotes 65

6.4.2 Displaying the Wii Remote Data 67

6.5 Testing the Game Server 68

6.6 Play Test 70

6.6.1 Input Method Pointing 71

6.6.2 Input Method Tilting 73

6.6.3 Input Method Gamepad 74

6.7 Analyzing the Problems 75

contents xi

6.7.1 Unsteady Cursor Movement 75

6.7.2 Game Design Aspect 77

6.8 Conclusion 79

7 Conclusion 83

7.1 Experiment Results 83

7.2 Future Improvements 84

a Appendix: Implementation and Source Codes 87

a.1 Pairing a Wiimote with Computer 87

a.1.1 Microsoft Windows Bluetooth Software 87

a.1.2 Bluesoleil Bluetooth software 88

a.2 Compiling the Project Source Codes 89

a.2.1 Downloading the Files 89

a.2.2 Additional Libraries 90

a.3 Brian Peek Wiimote Library 90

a.3.1 Testing the Connected Wii Remotes 90

a.3.2 Connecting Wii Remotes 90

a.3.3 Reading Wii Remote Data 93

a.3.4 Disconnecting Wii Remotes 97

bibliography 99

L I S T O F F I G U R E S

Figure 2.1 The audience use paddles to control the game in
Cinematrix 6

Figure 2.2 DOG and CATS from the Cinematrix 6

Figure 2.3 Air Strike, a flight simulator from Cinematrix 7

Figure 2.4 The audience leans their body left or right to con-
trol the game 8

Figure 2.5 Using the beach ball’s shadow to play Missile
Command 9

Figure 2.6 Live voting system using laser pointers 9

Figure 2.7 A working prototype of wireless sensor by Fred-
meier 10

Figure 2.8 System block diagram from Feldmeier’s system 10

Figure 2.9 Wii Remote and advertisements from Nintedo,
promoting family and group gaming for Nintendo
Wii 11

Figure 2.10 Tennis and golf game from Wii Sports 12

Figure 2.11 Playing the Mario Kart Wii using the Wii Wheel 13

Figure 2.12 Trauma Center, a surgical simulation game for
Nintendo Wii 13

Figure 2.13 SIXAXIS, the PlayStation 3 wireless controller 15

Figure 2.14 System diagram for Feldmeier’s Percussive 16

Figure 2.15 A dugi dugi, a rainstick, and a maraca 17

Figure 2.16 Illumination, painting the screen with live image
of candlelight 18

Figure 2.17 Three users interaction with Time Ripple 18

Figure 2.18 Finger tracking using infrared source and Wii Re-
mote by Johnny Chung Lee 19

Figure 2.19 Low Cost Interactive Whiteboard by Johnny Chung
Lee 20

Figure 3.1 Using Bluetooth, one PC could connect up to
four Wii Remotes 21

Figure 3.2 Several PCs, each with four connected Wii Re-
motes, are connected together via network 22

Figure 3.3 Wii Remote Coordinate System and Tilt Sensing 25

Figure 3.4 Wii Sensor Bar with its Infrared LEDs 25

Figure 3.5 A simple conversion from IR positions to cursor
position 26

xii

List of Figures xiii

Figure 3.6 A Simple Do-It-Yourself Sensor Bar using a pair
of infrared LEDs 27

Figure 3.7 The Wii Remote needs to detect two infrared spots
in order to be used as a pointing device accu-
rately 28

Figure 3.8 The system architecture 29

Figure 3.9 The stage installation for large group gaming us-
ing Wii Remote 31

Figure 4.1 A conceptual picture of the game 34

Figure 4.2 The game character and its indicator arrow 36

Figure 4.3 The comparison between the game characters, items,
game area, and the screen 38

Figure 4.4 The character’s speed and direction are determined
by the distance between the game character and
cursor 39

Figure 4.5 Two ways of holding the Wii Remote for tilting 40

Figure 4.6 The game character’s speed is determined by how
far and which direction the user tilts the Wii Re-
mote 41

Figure 4.7 How to hold a Wii Remote like a gamepad 43

Figure 4.8 Sideways input mode in Nintendo’s Super Smash
Bros Brawl 43

Figure 4.9 Several players can take control of a game char-
acter’s movement 45

Figure 5.1 A screenshot of input client application 50

Figure 5.2 Wii Remote and Input Client Identification 52

Figure 5.3 A screenshot of the game character’s sprites 57

Figure 5.4 Game area and a 3D camera 58

Figure 5.5 Game screenshot 59

Figure 6.1 The players, game screen, game server, and the
input client machines 64

Figure 6.2 The hardware setting combination used for test-
ing 65

Figure 6.3 Two Wii Remotes connect to the wrong input
clients 66

Figure 6.4 Cursor path during movement testing 69

Figure 6.5 Two game characters movement controlled by us-
ing the pointing method. 72

Figure 6.6 Two game characters movement controlled using
the tilting method. 74

Figure 6.7 Two game characters movement controlled using
the gamepad method. 76

Figure 6.8 A screenshot of the game Red Steel 77

Figure 6.9 Nintendo Nunchuk 78

Figure 6.10 Game character with the ranking displayed on
top of the character’s head 79

Figure 6.11 Player’s average score 80

Figure A.1 Pairing a Wii Remote using Bluesoleil 89

Figure A.2 A successful Wii Remote pairing using Bluesoleil 89

Figure A.3 Brian Peek’s Wiimote Tester application 91

L I S T O F TA B L E S

Table 5.1 Minimum Hardware Specification for Input Client
Machine 48

Table 5.2 Development Environment for Input Client Soft-
ware 48

Table 5.3 Data packet sent by the input client to the Game
Server 53

Table 5.4 Minimum Hardware Specification for Game Server
Machine 54

Table 5.5 Development Environment for Game Server Soft-
ware 55

Table 6.1 Laptop Specification Used for Testing 63

Table 6.2 Players’ scores using the pointing method 71

Table 6.3 Players’ scores using the tilting method 73

Table 6.4 Players’ scores using the gamepad/sideway method 75

Table 6.5 Average player scores from the experiment 80

L I S T O F L I S T I N G S

Listing 4.1 Algorithm of character speed calculation using Wii
Remote’s cursor position 39

Listing 4.2 Algorithm of character speed calculation using Wii
Remote Tilting 41

xiv

Listing A.1 Listing the paired Wii Remote using Brian Peek
Library 91

Listing A.2 Connecting Wii Remote using Brian Peek Library 92

Listing A.3 Getting the Wii Remote data using Brian Peek
Library 93

Listing A.4 Disconnecting the Wii Remotes using Brian Peek
Library 97

A C R O N Y M S

API Application Programming Interface

IR Infra Red

LED Light Emitting Diode

IDE Integrated Development Environment

xv

1
I N T R O D U C T I O N

1.1 large group gaming

Large group gaming can be described as a gaming activity played by
a group of people gathering at a certain place. In this project, group
game is defined as a big size video game. The system requires a large
screen to display the game and is played by hundreds of players. The
game usually takes place in a big hall with a large screen or cinema
where the audience sits facing the screen.

From the previous large group interaction projects, there are several
ways for the player to interact and participate in the game:

1. Using a bi-color paddle [Cin01] [Car94]. The player shows the
paddle and the mounted camera will track the number of paddle
shown by the players.

2. Tracking the audience movement. The mounted camera tracks
the audience movement. The audience leans their body to the
left or right to control the game [MAPS02].

3. Pointing laser pointer to the screen [MAPS02]. The player point
his/her laser pointer to the screen and the mounted camera will
track the laser points.

4. Using additional wireless device [FP04]. The device is small e-
nough so the user can hold it in one hand or wear it. It is motion
sensitive and able to send RF signal every time the player shakes
the device.

All of them are using simple interaction methods since the audience
has a little or none experience in gaming.

1

2 introduction

1.2 motivation

In this project, a new interaction method is introduced. The large
group game system is played using a game controller from Nintendo,
the Wii Remote. This game controller is different from the others due
to its motion sensing and IR sensor feature. The IR feature enables it
to be a pointing device.

Nintendo promotes a new way of playing game using the Wii Re-
mote with their new game console, the Nintendo Wii. It is played by
swinging, shaking, pointing, or tilting the controller. The effort is suc-
cessful since the Nintendo Wii attracts casual gamers and people who
never play games before [SK08].

I would like to introduce the use of Wii Remote in large group gam-
ing. These are the reasons why I believe that Wii Remote is suitable for
large group gaming:

1. It’s an inexpensive game controller. For about 40 Euros, one can
get a device equipped with a good motion and infrared sensor,
eleven buttons, vibration feature, and Bluetooth connectivity.

2. People can relate Wii Remote with gaming activities. Nintendo
have done a big marketing to attract people who never play
video game before. There is a bigger chance that people knows
Wii Remote and relates it with video game.

This project focuses on development and experiment of a large group
game played by using Wii Remotes. The goal of this research can be
formulized as these three questions:

1. How can a system support a large number of Wii Remotes?

2. What kind of possible interaction can be done using the Wii
Remote in group gaming?

3. How does the user perform using those interaction methods?

To address these questions, a prototype of a group game is devel-
oped and several tests are done using the Wii Remote to control the
game.

1.3 system overview

My system is designed to connect as many as possible Wii Remotes
to support large number of players. Each player uses his or her Wii
Remote to control the game. The system consists of a game server and
several input clients. The input clients are responsible in connecting

1.3 system overview 3

the Wii Remotes while the game server is responsible for displaying
and updating the game based on the input data from the connected
Wii Remotes.

To explore the interaction using Wii Remote in a large group gaming,
a game is designed and implemented on top of the system. The game
can be played by tilting, pointing, or pushing the Wii Remote’s buttons.
The game will be played in single player mode and group mode, where
two to three players are grouped in a team.

Finally, a prototype version of this system is implemented and tested
by a smaller group of audience. The player’s performance and behav-
ior during the game will be recorded.

2
B A C K G R O U N D

This chapter describes the background of this project. Several related
projects will be explored, followed by the Wii Remote and the reason
of choosing the Wii Remote for group gaming interaction.

2.1 related work

There are three related projects related to large group gaming. These
projects are focusing on simple interaction method which can be played
by a wider range of audience.

1. Cinematrix, an interactive system by Rachel Carpenter and demon-
strated in 1991.

2. Maynes-Aminzade’s audience interaction work, which introdu-
ced three techniques for audience interaction using image pro-
cessing.

3. A large group musical interaction using disposable wireless de-
vice by Feldmeier.

2.1.1 Cinematrix Interactive Entertainment System

At SIGGRAPH in 1991, Loren and Rachel Carpenter showed the Cine-
matrix, an interactive system which allowed an audience of 4000 peo-
ple to control the onscreen game using paddles [Car94] [Cin01]. The
audience sat in a big hall and the game is projected on a big screen,
just like in a movie theater. Each of them was given a paddle which
has two reflective sides—the red and green side (see Figure 2.1a). The
audience controlled the game by showing the red or the green side of

5

6 background

(a) The paddle (b) The audience

Figure 2.1: The audience use paddles to control the game in Cinema-
trix [Cin01]

the paddle. Using an attached video camera on the ceiling, the system
captured the audience paddles status, and updated the game.

Based on the audience position and the number of red and green
paddles shown by the audience, several games can be played by a
large group of people. One of them is Dog and Cat, a variant of the old
video game PONG. The audience is divided into two teams, based on
their sitting position. Each team control a fence to protect the cats from
a dog which run back an fourth (see Figure 2.2). The fence acts like the
paddle from the PONG that can bounce away the dog when it hit the
fence. The team shows the green side of the paddle to raise the fence
position and the red side to lower it.

Figure 2.2: DOG and CATS from the Cinematrix [Cin01]

Another team based game from Cinematrix is the Air Strike, a flight
simulator. The audience is divided by two groups based on their seat.
This time they are not competing but working together to fly a plane.

2.1 related work 7

The left side group controls the horizontal movement of the plane
while the right side group controls the vertical movement. The au-
dience flies the plane to avoid obstacles, goes through some floating
rings, and lands the plane safely.

The most interesting part about these games is the team coordina-
tion. There is a spontaneous non-verbal communication among the
team member to decide the movement. The effect is quite exciting and
perfect for team building.

(a) A screen shot of Air Strike (b) The audience playing Air Strike

Figure 2.3: In Air Strike, the audience fly a plane avoiding obstacles, flying
through several floating rings, and land the plane safely [Cin01]

2.1.2 Maynes-Aminzade’s Work

In 2002, Dan Maynes-Aminzade, presented three techniques for inter-
active audience participation [MAPS02]. The setting was still using a
video camera but unlike the Cinematrix, the audience didn’t use pad-
dles. These three techniques are:

1. Audience movement tracking. The audience leans left or right
to move and control the onscreen objects.

2. Object shadow tracking. The audience bats a beach ball into the
air while its shadow, projected on the screen, used as a cursor.

3. Laser Pointer tracking. The audience points the laser pointer to
the screen and the camera tracked the laser dots on the screen.

Maynes-Aminzade made several experiments and tested them on
movie theaters with audience of 150 to 600 college students. The games
were projected on the screen and the audience played them using those
three techniques.

8 background

The audience movement tracking allows the audience to control the
game by just leaning the body to the left or right, just like in Figure 2.4.
The system captures the audience movement (leaning movement) and
calculates the average movement. Using this technique, the audience
played the game PONG by controlling the paddle, or to steer a race
car in the game Pole Position, a classic F1 racing game.

Figure 2.4: The audience leans their body left or right to control the
game [MAPS02]

The second technique from Maynes-Aminzade uses a beach ball. As
the audience bats the beach ball into the air, the ball casted a shadow
on the projected screen (see Figure 2.5).Maynes-Aminzade choose to
track the shadow (instead the ball directly) since it is easy to identify
the shadow regardless the size and the type of the ball. The system
tracks the ball’s shadow and uses it as a cursor or game object. On the
experiment, the audience was playing Missile Command, where they
controlled the ball’s shadow to destroy the falling missiles from the
sky.

The third technique requires each member of audience to point his/her
laser pointer to the screen. One of the games that were played using
this technique was the Whack-A-Hamster. The audience directed their
laser at the hamsters to hit them. Other interesting uses of laser pointer
are the live audience poll and trivia game. The participants point their
laser to the displayed choices and the bar graphs continually update
to show the audience’s preferences until the time limit is reached.

2.1.3 Disposable Wireless Device for Group Musical Interaction

On 2004, Feldmeier and his team created a group musical interaction
system which allows a large group of people to participate in an in-

2.1 related work 9

Figure 2.5: Using the beach ball’s shadow to play Missile Com-
mand [MAPS02]

Figure 2.6: Live voting system using laser pointers [MAPS02]

teractive musical performance [FP04]. They built a wireless electronic
sensor which is small and cheap so that it is reasonable to give away
to a large number of people. They were able to create a working proto-
type that cost less than 3 dollar per unit (see Figure 2.7a). The controller
is small enough that the user can hold or wear it. It can detect extreme
motion such as dancing or clapping and transmit the radio-frequency
(RF) pulse.

The main part of the system is the processing unit. It collects the
RF data from the wireless sensors, analyzes the dance movement, and
generates music and event lighting based on it (see Figure 2.8). The
sensors’ RF pulse are collected by several receiver stations and sent to
the MIDI converter. The MIDI converter generates MIDI signals and
sends it to the Macintosh G4 computer. These signals will be analyzed
by its activity level and rhythmic features. These parameters will be
mapped to musical content or lighting control information. By making

10 background

(a) The device (b) Each participant can wear more
than one devices

Figure 2.7: A working prototype of wireless sensor by Fredmeier [FP04]

the musical and lighting system responsive to the dance, the audience
will have a feeling of controlling music.

The Feldmeier’s system is suitable for heavy rhythmic dance music,
such as house, techno, trance, and hardcore [Fel02].

Figure 2.8: System block diagram from Feldmeier’s system [Fel02]

2.2 wii remote

In this section, I will explore Wii Remote and the idea why Wiimote is
suitable and can be used for large group gaming.

2.2 wii remote 11

2.2.1 Nintendo Wii

On 2006, Nintendo has released a new next generation console, the
Nintendo Wii. The most innovative feature from Wii is the revolution-
ary controller, which is called Wii Remote or Wiimote, which allows
players to control the game using their hand movement or gesture.

Figure 2.9: Left: Wii Remote (from [Nin07]). Right: Advertisements from Nin-
tendo, promoting family and group gaming for Nintendo Wii (im-
age taken from http://us.wii.com/experience_gallery.jsp)

Nintendo carefully design this control scheme in order to attract
a broader audience, especially the non-gamer ones. This effort is fol-
lowed by the marketing campaigns and the game design. Nintendo is
always advertising its console or Wii games with a group of people
or a family playing together in a living room with a relax and fun
atmosphere. That is because the games for Wii are more casual and so-
cial game like Wii Sports, Mario Party, Wario Ware, or Brain Academy,
which contain mini-games and can be played in a group.

2.2.2 Capability

Wii Remote is a game controller that has shape like a normal television
remote control. Its motion sensor is able to detect 3-axis movement at
100Hz. It also has an IR sensor (a 1024x768 infrared camera) and able
to recognize up to four infrared points, also at 100Hz. This mechanism
allows the Wii Remote to be used as a pointing device [Wii07a].

http://us.wii.com/experience_gallery.jsp

12 background

Wii Remote has several buttons which are a directional pad, three
action buttons, and a trigger button. It has also a speaker, four blue
LEDs, and vibration features for the feedback.

The Wii Remote’s technical issues will be explored more on the
Chapter 3.

2.2.3 Wii Remote in Commercial Games

Let’s explore how the Wii Remote is used in several commercial games.

1. Wii Sports. This is a sports game developed by Nintendo. This
game is bundled with the console Nintendo Wii, except in Japan.
It contains five sports games: tennis, baseball, bowling, golf, and
boxing.
These five games are designed to be played using the Wii Re-
mote motion sensing features. The player moves the Wii Remote
mimicking the action in the real sport: swinging the golf club, a
tennis racket, a baseball bat, or a bowling ball.

(a) Wii Golf (b) Wii Tennis

Figure 2.10: Tennis and golf game from Wii Sports. Images are taken from
Nintendo website (http://www.nintendo.com/games/detail/
1OTtO06SP7M52gi5m8pD6CnahbW8CzxE)

2. Mario Kart Wii. Mario Kart Wii is a kart racing game developed
by Nintendo, featuring the characters from the Super Mario Bros
series. It is played by tilting the Wii Remote as if as it is steering
wheel. The Wii Remote is covered by an additional plastic case so
it is shaped like a small steering wheel. This accessory is called
Wii Wheel (Figure 2.11).

The player holds the Wii Wheel on the air and steer it to the left
or right as if as he/she is steering a kart. The game can also be

http://www.nintendo.com/games/detail/1OTtO06SP7M52gi5m8pD6CnahbW8CzxE
http://www.nintendo.com/games/detail/1OTtO06SP7M52gi5m8pD6CnahbW8CzxE

2.2 wii remote 13

Figure 2.11: Playing the Mario Kart Wii using the Wii Wheel. It can be played
by using the Wii Remote only. Image taken from http://www.

mariokart.com/

played by not using the Wii Wheel; just using the Wii Remote.
The player holds the Wii Remote horizontally and tilts it to the
left and right.

3. Trauma Center: Second Opinion. Trauma Center: Second Opin-
ion is a surgical simulation game developed by Atlus. In this
game, the player plays a role of a doctor or a surgeon at a hos-
pital. The game mission is to save the patient life by doing a
surgery in the operating room.

Figure 2.12: Trauma Center, a surgical simulation game for Nintendo Wii. Im-
age taken from http://www.atlus.com/trauma_center/

Using the Wii Remote as a pointing device, the user points the
Wii Remote as if as it is a surgical knife, scalpel, or other medi-
cal instruments. The player is trained to act and decide quickly,

http://www.mariokart.com/
http://www.mariokart.com/
http://www.atlus.com/trauma_center/

14 background

what to do next and which medical tools should be used, before
the patient’s life vital reach zero.

2.2.4 Wii remote as an input device

Other than its technical specification, there are several other reasons
why I believe Wii Remote is suitable for large group gaming, particu-
larly this project.

1. It is a game controller and the audience will immediately think
game as soon as they hold the device. This is good in order to
build the gaming atmosphere for the audience.

2. Wii Remote allows intuitive control scheme for gaming. The use
of motion control is more intuitive and appealing to a wider
range of audiences than just pressing the gamepad buttons. For
example, in the Wii Tennis game, the player has to swing the
controller mimicking the actions of swinging a tennis racket in
order to hit the ball. The same mechanism is also use in the game
Wii Golf, Wii Baseball, and Wii Bowling. The players swing the
Wii Remote as if as they are swinging a golf club, baseball bat,
or a bowling ball. This kind of control scheme makes the Wii
games are easy to learn and attract the people who never play
console game before, like the elders.

3. It is possible to substitute the Wii Remote with the PlayStation
3 controller, the SIXAXIS (Figure 2.13), which also has Bluetooth
and motion sensing ability. However, it is a two-handed device
and has 12 buttons, which people associated it with complex con-
troller for playing hardcore games [Ada06]. Hardcore games are
hard and complex games, which require a lot of gaming experi-
ences to play. This is also the problem of current game platforms.
Its controller is getting more complex, which could mean more
buttons, and could intimidate the non-gamer audience.

On the other hand, the single hand controller and Wii advertise-
ments encourage the player to think Wii Remote as a light saber,
tennis racket, fishing rod, drum stick, or a Mexican maracas.
People strongly relate Wii with casual and social game. There
are many Wii games which are just collections of simple mini
games and can be played in a group. Although Sony have been
released several casual and social games on their PlayStation 2

before (like Singstar, BUZZ, and Eye Toy Play series), it is Nin-
tendo which strongly emphasize the games that enjoyable for
the whole family member [Iva07].

2.3 projects using wii remote 15

Figure 2.13: SIXAXIS, the PlayStation 3 wireless controller [Ent06]

2.3 projects using wii remote

The Wii’s rising popularity is also followed by more and more re-
searches and projects using the Wii Remote. Some people use the con-
troller to generate electronic music that can be used by a DJ [Sof07], to
navigate an immersive 3D environment [Eng07], or even to conduct a
virtual orchestra [BTL+

07].
The Wii Remote is popular among the researchers or hobbyists be-

cause it is inexpensive, equipped with a built-in motion sensor, and
it can connect to a PC using the Bluetooth technology. Several pro-
gramming libraries and tutorials are also available in the Internet. Sev-
eral websites which are not affiliated with Nintendo, such as WiiLi
(http://wiili.org), provide links to several drivers and programming
libraries for Mac or PC. These online resources allow programmers to
develop software which can retrieve the input data from the Wii Re-
mote.

These are short reviews of several projects using Wii Remote.

2.3.1 Percussion project by Belcher

Belcher made a prototype of Wii Percussive [Bel07] which generates
percussion sounds—particularly drums sounds. The user holds and
moves the Wii Remote as if it is a drumstick. When the system rec-
ognizes the movement as a drum stroke, it will play a sampled snare
drum voice.

The system consists of an Apple Mac Pro and a Wii Remote (see
Figure 2.14).

2.3.2 Expressive Percussion Instrument

On 2008, Heise and Loviscach from Hochschule Bremen created a per-
cussion instrument simulator using Wii Remote [HL08]. Unlike Bel-
cher’s project, this project focuses more on realistic percussion simula-

http://wiili.org

16 background

Figure 2.14: System diagram for Feldmeier’s Percussive [Fel02]

tion. It simulates three percussive instruments: maracas, rainstick, and
dugi dugi (Figure 2.15). These three devices have one common cha-
racteristic— they generate sound from collision of beads, whether it’s
beads to beads or beads to membrane.

This project generates the sound using physical simulation of parti-
cle collision; in this case, it’s the beads. It utilizes commonly used game
development technology, the physics engine and audio processor. The
Newton Game Dynamics physics engine and AGEIA PhysX (hardware
acceleration for physics engine) are used to calculate and simulate the
percussive particles while the PortAudio is the audio processor which
generates sound.

The Wii Remote is used to get the user input. The user shakes, ro-
tates, or twirls the Wii Remote as if as it is a real maracas, rainstick,
or a dugi dugi. The software uses the input from the motion sensor to
calculate the force/impact and velocity which is done by the user with
the Wii Remote.

The calculated input data is used by the physics engine to simulate
the movement of the particles. Each particle moves and collides with
other particles or with the simulated shell/membrane. Every collision
data will be processed by the audio processor to generate sound.

2.3 projects using wii remote 17

Figure 2.15: A dugi dugi, a rainstick, and a maraca. These instruments are
simulated in a project by Heise and Loviscach [HL08]

2.3.3 Pinocchio: Conducting a virtual symphony orchestra

A team from Technical University of Munich, has created a system
called Pinnochio [BTL+

07], which allows the user to conduct a vir-
tual orchestra by using a regular conductor’s baton or a Wii Remote.
The virtual orchestra starts its performance when it receives a start
command, which is issued by a special baton gesture. The orches-
tra changes tempo and volume according to the conductor’s gesture.
The system can recognize a start and stop gesture, and able to extract
tempo and volume information from an easy-to-learn conducting mo-
tion.

2.3.4 WiiArts

WiiArts is an collaborative and expressive art project using Wii Remote,
experimenting with video, image, and audio processing [LKGM08].
The users can participate or interact with the art installations using
the Wii Remote’s pointing or motion sensing features.

WiiArts applications are built using Max/MSP/Jitter. The art instal-
lation is projected on a big screen and up to three users can interact
and work together on experimental image and sound processing. Wi-
iArts contains four art installations: Illumination, Beneath, WiiBand, and
Time Ripples.

In Illumination, the projection screen is a shared painting canvas,
where up to three persons can draw simultaneously by pointing the
Wii Remote. The system will draw the canvas by tracing the lines with
live image of candlelight (Figure 2.16). The candlelight image source is
captured from three burning candles using the webcams.

18 background

Figure 2.16: Illumination, painting the screen with live image of candle-
light [LKGM08]

In Beneath, the Wii Remote acts like a flashlight. The users point
the screen to expose portion of the image hidden in the dark layer.
This experiment encourage collaboration between players which up to
three players can play together to hunt a hidden item by pointing the
Wii Remotes to the screen.

Figure 2.17: Three users interaction with Time Ripple [LKGM08]

Collaboration between users is also encouraged in WiiBand, a real
time MIDI audio processing experiment. Each user moves their Wii Re-
mote to change the musical instrument, the sound’s pitch and volume.
Together, the users can make a musical performance, just like a band.
The system also displays visual feedback on the screen to accompany
the performance.

2.3.5 Johnny Chung Lee’s Wiimote Projects

Johnny Chung Lee, a PhD graduate student of the Human-Computer
Interaction Institute at Carnegie Melon University, made several exper-

2.3 projects using wii remote 19

iments utilizing the Wii Remote’s infrared camera [Lee07]. The user
does not hold the Wii Remote, but put it on a table with the infrared
sensor facing the user. The user wears the infrared sources while the
Wii Remote acts as the infrared camera. Based on this mechanism, he
made three applications which can be downloaded for free at his web-
site (http://www.cs.cmu.edu/~johnny/projects/wii/).

The first application is the finger tracking. Lee uses an infrared LED
array and stick reflective tape on his fingers. The Wii remote will track
the reflected infrared from the fingers. This will allow the user to in-
teract with a system by waving his/her hands in the air, similar to the
interaction seen in the movie Minority Report (Figure 2.18).

Figure 2.18: Finger tracking using infrared source and Wii Remote by Johnny
Chung Lee (image taken from http://www.cs.cmu.edu/~johnny/

projects/wii/)

The second application is a low cost interactive whiteboard. By point-
ing the Wii Remote to a projection screen or LCD display, the user can
have a low cost interactive whiteboard by using a pen white that has
an IR LED in the tip (Figure 2.19). If the screen is projected on a table
surface, then it will work as a tablet display. Up to four pens can be
used at the same time.

The third application is head tracking for desktop VR displays. The
user wears a head mounted sensor bar and the Wii Remote will track
the user’s head location. The system will render the view based on the
user’s head position and movement which create a realistic illusion of
depth of space.

http://www.cs.cmu.edu/~johnny/projects/wii/
http://www.cs.cmu.edu/~johnny/projects/wii/
http://www.cs.cmu.edu/~johnny/projects/wii/

20 background

Figure 2.19: Low Cost Interactive Whiteboard by Johnny Chung Lee which
can also be used for interactive tablet display (image taken from
http://www.cs.cmu.edu/~johnny/projects/wii/)

http://www.cs.cmu.edu/~johnny/projects/wii/

3
T E C H N I C A L I S S U E S

This chapter describes several technical aspects from Wii Remote, how
it can be used on a large group gaming system, and how the system
can connect a big amount of Wii Remotes. In the end of this chapter,
the system architecture of large group gaming using Wii Remote will
be explored.

3.1 bluetooth limitation

The Wii Remote uses Bluetooth technology to make wireless connec-
tion with the console Nintendo Wii. It is possible to pair a Wii Remote
to a PC via Bluetooth connection. However, due to the Bluetooth lim-
itation, a Bluetooth device can only connect to maximum seven other
devices at the same time [Bha01].

Figure 3.1: Using Bluetooth, one PC could connect up to four Wii Remotes

Despite the fact that a Bluetooth device can connect up to seven
devices, a recent experiment by a research group from Carnegie Melon

21

22 technical issues

University proved that one PC can only connect to six Wii Remotes at
the same time [Kha07]. The sixth and fifth Wii Remote are not stable
enough so only four Wii Remotes can be connected (Figure 3.1). The
console Nintendo Wii can only connect maximum four Wii Remotes
simultaneously.

3.2 connecting more wii remotes

Having four controllers is definitely not enough for our goal to make
a large group gaming. To solve this problem, I try to connect several
PCs together, where each PC will have several connected Wii Remotes.
If one PC can connect up to four Wii Remotes then theoretically, con-
necting four PCs together will allow the system to have input from 16

connected Wii Remotes (see Figure 3.2).

Figure 3.2: Several PCs, each with four connected Wii Remotes, are connected
together via network

Our large group gaming system needs to have a client-server archi-
tecture in order to connect several PCs via computer network. The net-
work and communication issues, including the our system architecture
will be explored in the end of this chapter (section 3.6).

To connect a PC to several Wii Remotes, a Bluetooth capable hard-
ware or dongle is needed. Once the connections are made, the system
needs a Bluetooth driver and a programming library which can access
the data from the connected device. By using the programming library,
developers are able to make an application which able to make Blue-
tooth connection with the Wii Remote, retrieving the data from the

3.2 connecting more wii remotes 23

Wii Remote, and even activate several feedback functions like speaker,
LEDs, and force feedback.

Before using the programming library, the Wii Remote needs to be
paired with the PC. This process can be done using the Bluetooth soft-
ware which is provided by the operating system. Until the end of this
thesis time frame, there is no programming library which is able to
pair the Wii Remotes by themselves (without manual setup from oper-
ating system).

3.2.1 Pairing the Wii Remotes

Wii Remote uses a non-secure, non-pairing Bluetooth connection which
will give a lot of trouble to pair with, especially using the default
Microsoft Windows Bluetooth stack. Not all Bluetooth adapters or
driver could work with the Wii Remote [Pee07] [Wii07b]. The Wii com-
munity websites WiiLi (http://www.wiili.org) provide a database
of working Bluetooth dongles and drivers with Wii Remote (http:
//www.wiili.org/index.php/Compatible_Bluetooth_Devices). Other
sources of working and non-working Bluetooth devices and drivers
can be found at WiiBrew website (http://wiibrew.org/wiki/List_

of_Working_Bluetooth_Devices).
The pairing process of the Wii Remotes started by pressing and hold-

ing the Wii Remote’s button ’1’ and ’2’ together. The Wii Remote’s
LEDs will start blinking and it will be detected by the Microsoft Win-
dows Bluetooth software (or other Bluetooth software). The Wii Re-
mote will be displayed as a Bluetooth device named Nintendo RVL-
CNT-01. It must be paired without using any passkey.

For more details how to pair the Wii Remote with a Windows ma-
chine, see Section A.1.

3.2.2 Wiimote Programming Library

There are several programming libraries available for free on the Inter-
net. Those libraries are not official from Nintendo and made by hobby-
ists who want to explore the possibility of using Wii Remote for their
projects.

Community websites http://en.wikipedia.org/wiki/Wii_homebrew
and http://www.wilii.org have several links to libraries, available for
a wide range of platforms and programming languages. These are
some of the popular libraries/drivers:

1. WiinRemote (http://onakasuita.org/wii/), a Wii Remote driver
for Windows. It is one of the first available drivers for PC. The

http://www.wiili.org
http://www.wiili.org/index.php/Compatible_Bluetooth_Devices
http://www.wiili.org/index.php/Compatible_Bluetooth_Devices
http://wiibrew.org/wiki/List_ of_Working_ Bluetooth_Devices
http://wiibrew.org/wiki/List_ of_Working_ Bluetooth_Devices
http://en. wiki pedia. org/wiki/Wii_homebrew
http://www.wilii.org
http://onakasuita.org/wii/

24 technical issues

author, a Japanese with the initial tokkyo, build and released the
driver just one day after the Nintendo Wii was launched for the
first time in Japan (2 December 2006).

2. DarwiinRemote (http://blog.hiroaki.jp/programming/darwiinremote/),
a driver for Mac OS X, based on the source code of the WiinRe-
mote.

3. GlovePIE (http://carl.kenner.googlepages.com), a driver for
Microsoft Windows. It uses scripts that allow games and appli-
cations to use Wii Remote.

4. wiimote-api (http://code.google.com/p/wiimote-api/), a Wii
Remote library written in C.

5. Brian Peek Managed Wiimote Library (http://www.brianpeek.
com/), a popular library by Brian Peek for C# using .Net tech-
nology. A lot of projects are using this library, including Johnny
Chung Lee’s projects. The source code is available on the web-
site.

6. WiiYourself (http://wiiyourself.gl.tter.org/), a native C++
library which supports most features of Wii Remote including
the Bluetooth stacks and audio. It is based on the source code
from Brian Peek.

The system uses Brian Peek’s library because it is simple to use and
it supports C#.net, which is the programming language for my system
prototype development. I use Brian Peek’s library version 1.5.2 which
can connect up to four Wii Remotes. This is the feature that is needed
most since most other libraries can only connect to only one Wii Re-
mote.

For more details about Brian Peek Wiimote library, see Section A.3.

3.3 wii remote motion and tilt sensor

The Wii Remote has an integrated 3-axis linear accelerometer ADXL330

from Analog Devices [Wii07a]. The component, positioned under the
big button ’A’, is able to measure a range of ±3g with 10% sensitiv-
ity [Wii08]. This 3-axis system allows the Wii Remote Wii to have six
degree of freedom: three linear movement directions (X, Y, Z) and three
rotation angles (pitch, roll, yaw), as shown in the figure 3.3.

The Wii Remote accelerometer measures the linear acceleration in a
free fall of reference. This means that if the Wii Remote is in free fall,
it will report zero acceleration (X, Y, Z are zero). If the remote is put
on top of a plain surface with the ’A’ button facing up (just like on

http://blog.hiroaki.jp/programming/darwiinremote/
http://carl.kenner.googlepages.com
http://code.google.com/p/wiimote-api/
http://www.brianpeek.com/
http://www.brianpeek.com/
http://wiiyourself.gl.tter.org/

3.4 wii remote infrared sensor 25

Figure 3.3: Wii Remote Coordinate System and Tilt Sensing (image taken
from http://wiibrew.org/index.php?title=Wiimote)

the Figure 3.3), it will report an upward acceleration (with positive Z
value, zero X, and zero Y) equal to the gravity acceleration g. Based on
this, I can calculate the tilt from the acceleration outputs, although this
will only be accurate if the Wii Remote is reasonably still.

3.4 wii remote infrared sensor

Nintendo Wii includes a plastic bar called Sensor Bar, as seen in Figure
3.4a. In order to use Wii Remote as a pointing device, the Sensor Bar
must be centrally placed, under or on top of the television.

(a) The Sensor Bar

(b) Infrared LEDs on the Sensor Bar

Figure 3.4: Wii Sensor Bar with its Infrared LEDs [Nin07] [Wik07]

http://wiibrew.org/index.php?title=Wiimote

26 technical issues

The Sensor Bar is not actually a sensor. It is a 20 cm bar which has
ten infrared LEDs, with five infrared LEDs being arranged at each end
of the bar. Figure 3.4b shows the infrared LEDs captured from the Sen-
sor Bar by using a digital camera. The Wii Remote, using its PixArt
Optical Sensor, will capture the infrared from the Sensor Bar [Wii06].
Wii Remote uses Sensor Bar so the pointing device can be used regard-
less of size or the type of the screen.

When the user points his/her Wii Remote to the screen (Sensor Bar),
the controller, using its 1024 x 768 infrared sensor, will track up to four
infrared spots and send the data to the console. After identifying two
spots and the distance between those spots, the Wii CPU will calculate
the cursor or pointed position.

(a) IR Points captured by Wii Remote’s IR sensor

(b) The IR points and the cursor position on the screen

Figure 3.5: A simple conversion from IR positions captured by the Wii Re-
mote’s IR sensor (a) to cursor position on the screen (b). The cur-
sor position is basically the midpoint of two IR points.

GlovePIE, one of the Wii Remote drivers, provides several scripts for
calculating the cursor position based on the infrared points [Ken07].

3.5 sensor bar modification 27

It has scripts that use the data from the accelerometer. A simple and
commonly used method to find the cursor position is by calculating
the midpoint from the two received Infrared points. The points are
normalized to the screen size to get the exact cursor position. The
Figure 3.5 shows a simple conversion from the IR points to the cursor
position on the screen.

3.5 sensor bar modification

The simplicity of Sensor Bar enables it to be replaced by any infrared
resources, such as a pair of candle or flashlight [Wik07] [Hac07]. There
are many guides for making your own Sensor Bar by using two or
more Infrared LEDs and some AA batteries. By making the Sensor
Bar replacement, we don’t have to own a Nintendo Wii to activate the
Sensor Bar.

(a) The Diagram (b) The Simple Sensor Bar

Figure 3.6: A Simple Do-It-Yourself Sensor Bar using a pair of infrared LEDs
(image taken from http://wiibuilder.com/archives/6)

Another reason to modify the Sensor Bar is the limited view area
of the Wii Remote’s infrared sensor. In the project Wiimedia [SGR07],
the view area of Wii Remote infrared sensor was measured and the
result was about 36 degrees. Using the standard Sensor Bar, the user
can only use Wii Remote with a distance between 2 to 4 m from the
sensor bar or screen (see Figure 3.7). This is because the Wii Remote
needs to detect minimum two infrared points in order to calculate the
pointed position.

For large group games, it is necessary to support more than four
players. In order to make the audience feel comfortable, they need to
sit much further from the game screen. This is a problem if the system
uses the standard Sensor Bar which has only 4 m distance. Therefore,

http://wiibuilder.com/archives/6

28 technical issues

it is necessary to expand the distance between the pair infrared points
to more than 20 cm. By making the distance further, the Wii Remote
range will be extended to more than 4 meter. In order to achieve that,
the IR LEDs need to be replaced by stronger ones.

Figure 3.7: The Wii Remote needs to detect two infrared spots in order to be
used as a pointing device accurately [SGR07]

3.6 system architecture

My group gaming system has client-server architecture, formed by one
game server and several input client machines. The input client is re-
sponsible for getting the input data and handling the Wii Remotes
using Bluetooth connection. The game server handles the game engine
and display. The input client sends the Wii Remote data to the game
server via network connection (see Figure 3.8).

3.6.1 Input Client

Each input client is responsible to make Bluetooth connection with
the Wii Remotes, retrieving the input data from the connected Wii Re-
motes, and send the data to the game server. The input client machine
can handle up to four Wii Remotes. Therefore, for every four Wii Re-
motes, the system needs one input client machine. For example, to
handle 15 Wii Remotes, the system needs a minimum of four input
client machines.

The input client machines are placed among the audience to divide
them into small groups of four based on their position. This will han-
dle the weak Bluetooth signal when the audience is in a radius more
than 10 meters.

3.6 system architecture 29

Figure 3.8: The system architecture of Large Group Gaming using Wii Re-
mote

Each input client machine has its own ID. Every connected Wii Re-
mote will get a local ID from the input client. Both input client ID and
the Wii Remote ID are sent to the game server along with the input
data. The game server can identify the source of the input data using
these two IDs.

The input client gets the input data from the connected Wii Remote
and sends the data to the server. Both tasks will be executed for 15

to 60 times per seconds so the game will be responsive to the user’s
Wii Remote. The input data will be displayed also on the screen of the
input client machine.

The implementation of the network issues, such as the network pro-
tocol and the sent packet data, will be explained on the implementa-
tion chapter, subsection 5.1.6.

The input client is managed by a game operator. The game operator
has to make sure that the player’s Wii Remote is connected to the input
client before the game session starts.

3.6.2 Game Server

The game server is responsible for processing all the input data from
the input clients, updating the game, and displays the game to the
screen. Just like the input client, the game server is managed by the
game operator. He/she is responsible for moderating the audience,
starting the game, and ending a game session.

30 technical issues

There are other things which the game server does:

1. Maintaining game status like player’s score, game timer, game
character position, and game item position.

2. Handling collision detection between game character and game
items. The game server will increase the player score whenever
a character hit an item.

3. Managing player database, which contains player ID, Wii Re-
mote ID, game character, and which group the player belongs to
(for playing in the group mode).

4. Sending feedback data to the connected Wii Remote via the in-
put client. For the feedback, the Wii Remote’s vibration, LEDs,
or speaker can be used.

5. Processing the input data from the Wii Remote and calculating
the character speed. The game server considers the current game
mode (single or group mode) and the input mode (pointing, tilt-
ing, and gamepad) for the character speed calculation.

3.6.3 Stage Installation

These are additional hardware or settings of the input client and game
server machines, which are required for running a large group gaming
using Wii Remote:

1. Game screen. The screen size must be from 20 inch to a size of
a cinema screen, depending on the number of audience.

2. Sensor Bar or IR Sources. The IR sources must be placed in the
center and below the screen. The size and the arrangement of
the IR sources depend on the size of the audience and the range
of their seats. All players’ Wii Remotes should be able to detect
at least two IR points in order to be used as a pointing device.

3. Audience. The audience sits in several rows in front of the large
screen. The minimum distance from the screen depends on the
audience numbers (the game screen should be visible by all au-
dience) and the IR sources.

4. Input client machines. The input client machine should be placed
near the group or the players (less than 10 m). Several input
client machines can be placed among the audience in order to
cover all Wii Remotes and to support zoning. These machines
are operated by the game operator, especially in the beginning
of the event, in order to get all Wii Remotes connected.

3.6 system architecture 31

5. Game server machine. The game server machine is placed near
the game screen. If the game supports sound feature, then the
game server could be equipped with speakers placed near the
game screen.

Figure 3.9: The stage installation for large group gaming using Wii Remote,
with the position of the game screen, IR sources, the audience, the
game server, and the input client machines

4
G A M E A N D I N T E R A C T I O N D E S I G N

To test the concept of the group gaming system using Wii Remote,
a game prototype is designed and implemented on top of the system.
The audience will control the game using their Wii Remotes. The game
is designed to be simple to focus more on testing the concept of large
group gaming using Wii Remote.

There are three interaction methods using Wii Remote (pointing, tilt-
ing, and pushing the buttons) which will be explored and used to con-
trol the game.

4.1 game idea

The idea of this game is to control the game character movement, col-
lecting as many as possible items that appear randomly on the screen
at a certain given time. When the timer ends, the character who collects
the most items wins the game.

The game is inspired by real world fruit harvest festival or mush-
room picking. Sometimes people compete in collecting the most fruits
or mushrooms in order to make the job more fun and enjoyable.

4.2 target audience

The genre of this game is fast-action. The player has to decide the
character movement quickly within a limited time while competing
with other players.

The main target group of the game is casual gamers (with one to four
hours a day playing game), specifically young male or female with age
between six to 30 years old. Therefore, it is necessary to simplify the
game design and control in order to support the main target group.

33

34 game and interaction design

Figure 4.1: The conceptual picture of the game. Several game characters are
running around catching the items

4.3 game mechanic

These are the basic game mechanics:

1. The game character has the ability to run at a different speed and
to any direction. The player task is to control the character speed
and direction. When the player does not give any command, the
game character will stand still. The character velocity and run-
ning direction are based on the interaction or input methods
which will be explained on subsection 4.5.

2. All game characters will appear at the same time on the screen.
It is necessary for each character to have a differentiator (such as
color or shape) so the player can recognize his/her game charac-
ter.

3. The game area is the area where game characters and game
items are rendered. The game characters and items cannot move
or appear outside this game area.

4. The game character collects the game item by hitting it while
moving. The hit item will disappear and the player will gain a
score.

5. There are 10 to 20 small game items which appears randomly
on the game area. When a character hits an item, the item will

4.4 the game objects 35

disappear. Less than half a second later, the system will add
another item and put it randomly on the game area. This is done
to maintain a constant item number inside the game area.

6. One game session runs for 20 to 40 seconds. When the time is
up, the player who collects the most items (highest score) wins.
It is possible to have more than one winner if they all have the
same score. Every time the game session restarts, the score will
be reset.

4.4 the game objects

This subsection describes the details and visualization of every game
object.

4.4.1 The Game Character

The game character is the player representation in the game. One game
character can represent one player or several players in the group
mode. The character is visualized as a cartoonish human character
with tiny body and large head. This type character is suitable with the
game theme and it will make game atmosphere more fun and enjoyed
by the main target group.

In addition to a different color and shape for each game character,
an indicator arrow is put below the character as shown on Figure 4.2.
Each game character will have a different arrow color. Players will
know their characters since they get the color code before the game
starts.

The character has two actions/animations: standing and running.
When the character runs, it is facing the running direction. While run-
ning, the character can pick an item by hitting it without losing any
speed. When a character hits another character, it will stop running.
The character will still doing its running animation/movement with-
out changing position (running on the spot) until the other character
moves away or the player change the running direction.

The indicator arrow indicates the running speed and direction. The
arrow points to the running direction and its length indicate how fast
the character moves. This indicator arrow gives a better feedback to
the user, avoiding missing characters.

36 game and interaction design

Figure 4.2: The game character and its indicator arrow. It is used to give the
player feedback of the character’s movement.

4.4.2 Game Item and Area

Based on the game theme, a fruit is picked as the game item. To sim-
plify the game, every game item has the same shape and will give the
same score when it is picked.

The game area is basically the screen area where the system draws
the game objects and characters. It is possible to use the whole screen
but it is better to leave out some space for other game indicators such
as scores and timer indicators.

Even though the system could draw other objects like non-playable
background objects or obstacles, it only uses plain and empty game
area. Adding unnecessary objects will only make the game more com-
plex and distract the audience.

4.4.3 The Game Objects Proportion and Visualization

The game uses a screen with 1024 pixel width and 768 pixel height.
It is the common size of a projection screen. The system could have
supported more than one monitor but this game is designed to use
one game screen.

4.5 interaction design using wii remote 37

The screen size must be considered when designing the game objects
size, especially the character. If it is too big, the screen will easily be
crowded with game objects. If it’s too small, the player will have a
difficult time to recognize the objects.

The game character will be displayed as a sprite with height between
100 to 150 pixels, and width between 50 to 60 pixels. Using this size,
the screen can display up to 25 game characters without overcrowding
the screen because only half of the screen area is filled. This will be
enough for a prototype.

However, for a real large group gaming, the system needs to support
80 to 100 players at a time. A solution for this problem is to use group
mode which enables several players to control one game character. The
group mode will be discussed on subsection 4.6.

The game item size should be smaller than the game character. If it
is too big, the game will be too easy because the player can hit the item
easily.

The game item size will be 30 to 40 pixel width/height. Using this
size, the system can draw up to 80 items.

The amount of items depends on how many game characters appear
on the screen. For this game, the item number is twice as much as
the characters. Based on the proportion diagram below (Figure 4.3),
having 26 items for 13 players gives the game character enough room
for moving and collecting item.

4.5 interaction design using wii remote

Another purpose of this game is to test three interaction methods
which are commonly used for playing game by using the Wii Remote.
These interaction methods are:

1. Pointing. The Wii Remote is used as a pointing device. The
player points it to the screen and the cursor will appear. This
method requires a Sensor Bar or two IR points/source.

2. Tilting. The player holds the Wii Remote and tilts it to the left,
right, backward, or forward.

3. Gamepad. In this method, the Wii Remote is used as if it is a nor-
mal gamepad, as shown in Figure 4.7. The game will abandon
any input from the motion or IR sensor and only accept input
from the buttons. The player holds the Wii Remote horizontally
with both hands and use his/her thumbs to press the buttons.
The left hand thumb pushes the directional pads and the right
thumb pushes the button ’1’ or ’2’.

38 game and interaction design

Figure 4.3: The comparison between the game characters, items, game area,
and the screen. The small orange rectangles represent the game
items.

All players use the same input method at the same time. There can
be only one active input method. The input method can only change
before or after a game session, not during the game play.

How can those input methods control the game? This issue will be
explained on the following subsections.

4.5.1 Pointing

The character’s speed and direction are determined by the distance
between the game character and cursor (see Figure 4.4)

The character moves only when the Wii Remote button ’A’ is pressed.
When no button is pressed, the character will stand still. This will make
the control mechanism easier for the player. If the character runs all the
time, it will be harder for player to control the movement.

The character moves as if it’s chasing the cursor. It will stop running
once it is on the same position as the cursor. In order to make the
character running all the time, the player has to move the cursor and
keep a distance between the cursor and the game character.

One basic algorithm to determine the speed is to calculate the dis-
tance between the current character position and the pointed position
by the cursor. The further the character with the pointed position, the
faster it will move. The closer the character with the pointed position,
the slower it will be. The distance will have maximum and minimum

4.5 interaction design using wii remote 39

Figure 4.4: The character’s speed and direction are determined by the dis-
tance between the game character and cursor

threshold value to prevent the character speed exceeding the maxi-
mum speed and to make the character stop when it too close with the
cursor or pointed position.

The basic algorithm of character speed calculation using the cursor
is described in Listing 4.1.

Listing 4.1: Algorithm of character speed calculation using Wii Remote’s cur-
sor position

c u r s o r P o s i t i o n ← ProcessIRdata ()

distanceX ← playerChar . x − c u r s o r P o s i t i o n . x
distanceY ← playerChar . y − c u r s o r P o s i t i o n . y
d i s t a n c e ← Math . SquareRoot (distanceX 2 + distanceY 2)

{ C a l c u l a t e s p e e d with d i s t a n c e t h r e s h o l d }
i f (d i s t a n c e < MinimumDistance) then

playerChar . speed ← 0 . 0

e lse i f (d i s t a n c e > MaximumDistance) then
playerChar . speed ← MaximumSpeed

e lse
playerChar . speed ← (d i s t a n c e / MaximumDistance) ×

MaximumSpeed
end i f

40 game and interaction design

{ C a l c u l a t e c h a r a c t e r d i r e c t i o n us ing a r c t a n g e n t }
playerChar . d i r e c t i o n ← Math . Atan2 (distanceX , distanceY)

4.5.2 Tilting

The user holds the Wii Remote vertically and tilts the controller to
the left, right, forward, or backward. The game character’s speed and
direction are determined by how far and to which direction the user
tilts the Wii Remote.

There are two ways to hold the Wii Remote for this input method: by
using one hand, and both hand (see Figure 4.5). The first way is quite
clear: holding the Wii Remote with one hand and tilting it in the air.
The Wii Remote’s buttons are facing the player so the player’s thumb
can easily press the button ’A’.

The second way is like the first method, but the player puts the
bottom of the Wii Remote on top of the other hand surface. The player
tilts the Wii Remote as if as it is a joytick or a shift gear of a car. The
bottom part of Wii Remote, which is supported by the player’s second
hand, acted as an axis and does not move or only move slightly when
the Wii Remote is tilted. More experienced players do not have to use
this method because they might be able to hold the Wii Remote more
stabile and able to use only one hand for tilting.

(a) Using one hand (b) using the second hand to
support the Wii Remote

Figure 4.5: Two ways of holding the Wii Remote for tilting

As described in Section 3.3 and on Figure 3.3, the Wii Remote motion
and tilt sensor return the value of axis X, Y, and Z, ranging from -3.0 g

4.5 interaction design using wii remote 41

to 3.0 g. Tilting the Wii Remote without shaking or giving an additional
force gives a value between -1.0 g to 1.0 g.

The default or base position for the Wii Remote in this input method
is the Wii Remote stands vertically with IR sensor facing upwards. In
this base position, the tilt sensor values {X, Y, Z} will be close to {0, -1,
0}.

From this position, tilting the Wii Remote to the left will get the X
value closer to -1 while tilting it to the right will make it closer to +1.
Tilting the Wii Remote forward will make the Z value closer to +1,
while tilting it backward will make the value -1.

The game character speed can be calculated by adding X and Z val-
ues from the tilt sensor. Both values are added as two vectors and the
result vector can be used to calculate the character direction and ve-
locity. The value Y is abandoned. It is possible that the sensor value
is smaller than -1.0 g or bigger than 1.0 g, especially when the player
shakes or tilts the Wii Remote with force. Therefore, the system will
make sure that the X and Z value is in the range by applying minimum
and maximum value threshold.

(a) Tilt to the right (b) The character runs to the right

Figure 4.6: The game character’s speed and direction are determined by how
far and which direction the user tilts the controller.

Unlike the interaction method using cursor or pointing, the user
does not have to press or hold any key to make the char run. Tilting
the Wii Remote is enough to make the character moves. To make the
char stand still, just hold the Wii Remote as vertical as possible. The
algorithm of this calculation is shown in Listing 4.2.

42 game and interaction design

Listing 4.2: Algorithm of character speed calculation using the Wii Remote
tilt sensor values

t i l t X ← wiimoteTi l tData . x ;
t i l t Z ← wiimoteTi l tData . z ;

{ Value t h r e s h o l d }
i f (t i l t X < −1 .0) then

t i l t X ← −1.0
e lse i f (t i l t X > 1 . 0) then

t i l t X ← 1 . 0

end i f

i f (t i l t Z < −1 .0) then
t i l t Z ← −1.0

e lse i f (t i l t Z > 1 . 0) then
t i l t Z ← 1 . 0

end i f

{ c a l c u l a t e s p e e d with v a l u e t h r e s h o l d }
sumVector ← Math . SquareRoot (t i l t X 2 + t i l t Z 2)
i f (sumVector < MinimumValue) then

playerChar . speed ← 0 . 0

e lse i f (sumVector > MaximumValue) then
playerChar . speed ← MaximumSpeed

e lse
playerChar . speed ← MaximumSpeed * sumVector ;

end i f

{ C a l c u l a t e c h a r a c t e r d i r e c t i o n us ing a r c t a n g e n t }
playerChar . d i r e c t i o n ← Math . Atan2 (distanceX , distanceY)

4.5.3 Gamepad

The user holds the controller horizontally, and pushes the directional
pad to control the game character (Figure 4.7). This method utilizes the
buttons and abandons the Wii Remote’s motion and pointing sensing
feature. The game character can only move to eight different directions
because there are eight directions available on the Wii Remote’s direc-
tional pad.

The character moves when the directional pad is pressed. The char-
acter moves with acceleration. This means the running speed increases
until the maximum speed while the button is pressed.

The reason I use this interaction method is to test the player who
is familiar with normal gamepad, or for an experienced and hardcore
gamer. The Wii Remote is designed to be able to play in this hori-

4.6 group mode 43

Figure 4.7: How to hold a Wii Remote like a gamepad.

zontal mode or ’sideways’ mode by Nintendo. One of the Nintendo
games, Super Smash Bros, supports gamepad mode besides the input
methods utilizing the shake feature in order to facilitate both amateur
gamer and hardcore game. The amateur gamer would prefer tilting
and shaking, focusing on fun. The hardcore game would prefer ordi-
nary gamepad, focusing on score and performance.

Figure 4.8: Sideways input mode in Nintendo’s Super Smash Bros Brawl. Im-
age taken from http://www.smashbros.com/en_us/howto/basic/

basic07.html

4.6 group mode

In group mode, one game character will be controlled by a group of
two to four players. All players in the group must work together to
decide the character movement.

http://www.smashbros.com/en_us/howto/basic/basic07.html
http://www.smashbros.com/en_us/howto/basic/basic07.html

44 game and interaction design

This group mode facilitates cooperation and social activity between
the players. For most people, one of the reasons they play games is
to have a social experience with their friends or family [Rou01]. In
Cinematrix, there is a game where audience were cooperating to fly a
plane. There were a rich conversation as the audience were shouting
to suggest the best movement. This communication also happened in
Aminzade system. While the audience pointed their laser in a trivial
game, other players were shouting to persuade other players to point
their laser to a certain position.

The group mode is a way to reduce the number of game characters
on the screen. Since there is limitation of displayed game character, it
is a problem when the number of player is more than 40. By making
one game character controlled by four persons, the system will be able
to support 100 players by displaying 25 game characters.

The game can be played using any of three interaction methods
which have been explained before: pointing, tilting, or gamepad mode.
By summing up the input vectors of all players in the group, the game
character’s running speed and direction can be determined.

The game character could end up frozen or not moving at all if all
the resulting input vectors is zero or near zero. Imagine if two play-
ers are controlling a character. One of them is trying to move the char
to the left while the other is trying to move it to the opposite direc-
tion. The character will move nowhere. This is the fun part of the large
group gaming. Based on some experiments from the Cinematrix sys-
tem, this group mode could initiate a verbal or non-verbal communi-
cation.

In group mode, each game character will have more than one arrow
indicator (Figure 4.9). Each arrow represents the input data from every
player who controls the character. This could be a potential problem
if there are too many players in one group. There will be too many
arrows and it will confuse the players. Two possible solutions are to
reduce the arrow size or limit the number of players in the group.

In the previous large group gaming or interaction (Cinematrix, Am-
inzade, and Feldmeier), they did not used any individual avatar or
indicator, only the sum or total input of the audience. This could cause
doubt in the player’s mind, whether they are really controlling the
game. That’s why there are a few players who intentionally make some
strange input in order to see whether their effort affects or disturbs the
total group input [MAPS02] [Cin01]. This is the reason why my system
displays the indicator arrow for individual feedback.

4.7 other game variations 45

Figure 4.9: Several players can take control of a game character’s movement

4.7 other game variations

The game mechanics described in the previous section are just the
basic rules. It is mainly for casual audience and testing the concept of
group gaming utilizing Wii Remotes.

It is possible to make other variation of the game by adding more
rules, more complex game mechanism, and more objects. These will
make the game more complex thus challenges more experienced player.

These are several possible additional rules or game objects for an-
other game variation:

1. The ability to attack or stun. A character has the ability to do a
special move to stun other characters thus slowing down their
movement. If the hit character is carrying an item, the item will
be dropped and the opponent can grab it away. To do this special
movement, the player need to do a movement combination such
as pressing a button while shaking the Wii Remote, or pressing
a sequence of buttons.

2. One can defend his/her character from the attack by activating
a special movement which is generated by a special input se-
quence using Wii Remote.

3. The ability to jump to reach a further distance. This can be done
by combining several input methods like holding a button while
shake the Wii Remote vertically.

4. Teaming up, where one team contains several game characters
which are controlled by individual player. Forming a team makes

46 game and interaction design

the attacking and defending more complex. Each team can do of-
fensive or defensive movement by forming a special formation.

5. In the group mode, the game character can be replaced with
something big and slow like a ship or a vehicle. By making the
indicator arrow smaller, one character/vehicle movement can be
controlled by eight players. The game rules can be changed to a
ship race game to support this character visualization.

5
I M P L E M E N TAT I O N

As described on Chapter 3, my group gaming system for Wii Remote
contains two major parts: the game server and the input client. In this
chapter, the implementation of both parts including the game which is
described on previous chapter will be explored.

The target of implementation is to build a prototype version of the
system so it can be used to test the concept of large group gaming
using Wii Remote. The prototype version supports a smaller audience,
with a maximum of 16 players.

5.1 input client

5.1.1 Hardware Specification

A PC-based computer is used for the input client machine. The ma-
chine must have sufficient processing power to get input from Wii
Remote, process the input data, and send them to the server 30 times
per second. Table 5.1 contains the hardware specification used for the
development and testing.

The most important hardware for the input client machine is the
Bluetooth capable hardware. For that purpose, a USB Bluetooth dongle
or a laptop with built-in Bluetooth hardware is used. Since not all
Bluetooth dongle or hardware is compatible with the Wii Remote, I
make sure to use only the Bluetooth hardware and driver which are
listed on http://www.wiili.org or http://www.wibrew.org.

47

http://www.wiili.org
http://www.wibrew.org

48 implementation

Table 5.1: Minimum Hardware Specification for Input Client Machine

OS Windows XP Home Edition

Processor 1.6Ghz single core processor

Memory 768Mb

Bluetooth Hardware Acer BT-600 and built-in Blueooth hardware
for Sony Vaio Laptop (VGN-SZ23)

Bluetooth Driver BlueSoleil version 5.0.5 and built-in Sony
Vaio laptop Bluetooth driver

Networking LAN or Wireless LAN

5.1.2 Software Specification

The development of input client is using C# and .Net technology from
Microsoft. For the IDE, the Microsoft Visual Studio 2008 Express Edi-
tion is used for editing the source codes, compiling, and debugging. It
can be downloaded for free and it is a highly recommended software
to develop application utilizing C# and .Net technology.

The details of the software enviroment and programming libraries
used for the development is shown on Table 5.2.

Table 5.2: Development Environment for Input Client Software

Programming Language C#

IDE Visual Studio 2008 Express Edition

Additional Libraries .Net 2.0, Brian Peek WiimoteLib v 1.5.1

5.1.3 Implemented Features

These are the implemented features on the prototype version:

1. Ability to detect and connect available Wii Remotes. The appli-
cation can only connect with the paired Wii Remotes. Up to four
Wii Remotes are supported by the input client.

2. Once the Wii Remotes are connected, the client will fetch the
input data from them. This is done 30 times per second.

3. The input client manages the connected Wii Remotes by assign-
ing them a local ID (from one to four).

5.1 input client 49

4. The user is able to assign the input client a number for an ID.
This ID will be used to differentiate several input clients when
making connection with the Game Server.

5. The input client displays the information of the input data from
the connected Wii Remotes. This information is updated 30 times
per second.

6. The user is able to give the input client the IP address of the
game server and the port number. Both are needed in order to
make a connection with the game server. If no information pro-
vided, then the default data will be used.

7. The input client is able to establish a network connection with
the game server. A socket connection with the protocol UDP is
open based on the given IP address and port number.

8. Once the connection is open, the input client will send all input
data to the server. This is done 30 times per seconds, until the
user stops the connection or an error occurs.

5.1.4 Connecting Wii Remotes

Establishing a connection by pairing the computer with the Wii Re-
mote is done using the Microsoft Windows Bluetooth Setup or other
Bluetooth software or drivers such as Bluesoleil. See Appendix A, Sec-
tion A.1 for a step-by-step pairing a Wii Remote to a PC.

The pairing process has to be done in order to make the Wii Re-
mote available to the programming library. Up until the end of the
time frame of this thesis, there are no programming library yet which
can make connection and pairing the Wii Remotes without using addi-
tional Bluetooth driver or software.

To process the input data from the paired Wii Remote, the input
client uses Brian Peek library. The latest version of this library supports
multiple Wii Remotes and is able to access other features from the
Wii Remote (battery level, vibration, and extension hardware like Nin-
tendo Nunchuk). The input client only uses the basic features, which
are:

1. Connecting the Wii Remote. Calling the method FindAllWiimotes()

will connect all paired Wii Remotes on the machine and store
the Wii Remotes into a list. Up to four Wii Remotes can be con-
nected.

2. Getting the input data: two IR points, motion data from tilt sen-
sor, and all button status. The IR points are two integer points X

50 implementation

and Y coordinate with range from (0,0) to (1023, 767).
The motion data are three floating points X, Y, and Z (one data
for each axis). Each value is normalized from -3.0 to 3.0 which
is the gravity value g. It can return a value smaller than -3 or
bigger +3 if the Wii Remote is shaken instead of tilted, but the
data is not valid to be used.

3. Turning on the LED on Wii Remote. This is done to indicate
the Wii Remote numbering (will be explained on the next sub
section)

For more details and the source code of how to use Brian Peek’s Wii
Remote library, please see Section A.3.

Figure 5.1: A screenshot of input client application, with two connected Wii
Remotes. The second Wii Remote is holding the button A.

5.1.5 Wii Remote and Input Client Identification

Each input client machine has a number ID starting from one to n

(n is the maximum number of active input client during the game).
This number is given manually by the user. Therefore, it is the user’s
responsibility to maintain the uniqueness of input client’s ID.

5.1 input client 51

Each Wii Remote connected to the input client will be given a local
ID from one to four. The input client is responsible giving the Wii
Remote local ID. Since each Wii Remote has four LEDs, the input client
just turn on the LED to indicate the Wii Remote local ID.

For example, an input client has three connected Wii Remotes. Those
Wii Remotes are given local ID 1, 2, and 3. Therefore, the Wii Remote
with local ID 1 will have its first LED on, the Wii Remote with local ID
2 will have its second LED on, and so on.

The game server identifies each Wii Remote using the global Wii
Remote ID which can be calculated by using the Wii Remote Local ID
combined with the input client ID. Since the maximum number of Wii
Remote on each input client is four, then the system can calculate each
Wii Remote global ID by using this formula:

GlobalWiiRemoteID = ((InputClientID − 1)× 4)

+ WiiRemoteLocalID

For example, a Wii Remote with a local ID 2 is connected to an input
client with ID 3. The global ID of this Wii Remote will be:

((3 − 1)× 4) + 2 = 10

The game server will assign a global ID 10 for this Wii Remote, and
it will be used to control and update the game character. Therefore,
it is important for the user to know on which input client his/her
Wii Remote connect to. Otherwise, the player cannot identify correctly
his/her global ID and which game character or cursor he or she is in
control.

Every Wii Remote will have a unique global ID. This global ID can
also be used to identify each player since every player can only use
one Wii Remote. It is the duty of the game operator to tell the player
his/her global ID after the player’s Wii Remote is connected.

5.1.6 Network Connection

The input client and the game server use socket connection with UDP
protocol for the network communication. There are several reasons
why UDP is well suited for this system:

1. It is fast, lightweight, and has lower latency. This is needed since
every input client will send the data 30 times a second to the
game server.

2. UDP is a connectionless protocol, which means there is no need
of establishing a connection before and after sending the data.

52 implementation

Figure 5.2: Wii Remote and Input Client Identification. The game server cal-
culate each Wii Remote’s golbal ID by using the Wii Remote local
ID and the input client ID

The input client can immediately send the data to the game
server without knowing whether the game server is available
or not.

The input client creates an UDP connection and sends the data using
the given game server’s IP address and port. By default, the system use
port number 5100.

Each network packet data is 46 bytes, containing binary data of the
Wii Remote input data. It is designed to be small and compact so it
can send the data 30 times per second without burdening the game
server and network. Each packet contains only input data from one
Wii Remote. If the input client has four connected Wii Remotes, it will
send four packets of data; each contains the data from Wii Remote 1,
2, 3, and the Wii Remote 4. Table 5.3 shows the details of the packet
data byte per byte.

5.2 game server

5.2.1 Hardware Specification

The hardware specification of the game server is higher than the in-
put client machine. Besides handling the input data sent by the input
clients, the game server also handles the game engine and visualiza-
tion. The game is visualized in 3D; therefore, the machine must have a

5.2 game server 53

Table 5.3: Data packet sent by the input client to the Game Server

Byte Data Range Value

0 input client ID 1 to 255

1 Wii Remote local ID 1 to 4 1 to 4

2 Button A status 1 or 0

3 Button B status 1 or 0

4 - 11 Tilt Sensor axis X 64 bit floating point

12 - 19 Tilt Sensor axis Y 64 bit floating point

20 - 27 Tilt Sensor axis Z 64 bit floating point

28 IR point 1 availability 1 or 0

29 - 32 Coordinate X of IR1. Only valid if byte 28 is
1

32 bit signed integer

33 - 36 Coordinate Y of IR1. Only valid if byte 28 is
1

32 bit signed integer

37 IR point 2 availability 1 or 0

38 - 41 Coordinate X of IR2. Only valid if byte 37 is
1

32 bit signed integer

42 - 45 Coordinate Y of IR2. Only valid if byte 37 is
1

32 bit signed integer

46 D-pad button status. 1st bit: D-pad UP, 2nd
bit: D-pad DOWN, 3rd bit: D-pad LEFT, 4th
bit: D-pad RIGHT

0000b to 1111b

54 implementation

3D-enabled graphics card. For the prototype, sound feature is not avail-
able. Table 5.4 contains the hardware specification which was used for
the development and testing.

Table 5.4: Minimum Hardware Specification for Game Server Machine

OS Windows XP Home Edition

Processor 1.6Ghz single core processor

Memory 768Mb

Graphics Card DirectX 9c-compatible graphics card with 3D
acceleration, 64MB VRAM

Networking LAN or Wireless LAN

Others 20 inch Display, a pair of candles or IR LED
for Sensor Bar replacement

For the game screen, a 20 inch LCD monitor is used, which is good
enough for prototype. The ideal scenario would be a large projected
screen. The sensor bar is implemented using two pair of candles which
are placed below the monitor. The candles are arranged to be 20 cm
apart, simulating the IR source from the Nintendo’s Sensor Bar.

5.2.2 Software Specification

The game server is developed using C# and .Net technology from Mi-
crosoft. The used IDE is Microsoft Visual Studio 2008 Express Edition.

The game server handles the 3D graphics and the game engine. An
additional programming library for 3D visualization is used in order
to take advantage of the 3D-acceleration hardware from the graphics
card.

The game server mainly uses the graphic engine IrrlichtNETCP, a C#
version of Irrlicht Engine (http://irrlicht.sourceforge.net). The li-
brary can be downloaded for free at their website at http://irrlichtnetcp.
sourceforge.net/. The version 0.8 is used for the prototype imple-
mentation. Additional libraries for the game server development can
be found on Table 5.5.

5.2.3 Implemented Features

These are the implemented features on the prototype version:

http://irrlicht.sourceforge.net
http://irrlichtnetcp.sourceforge.net/
http://irrlichtnetcp.sourceforge.net/

5.2 game server 55

Table 5.5: Development Environment for Game Server Software

Programming Language C#

IDE Visual Studio 2008 Express Edition

Additional Libraries .Net 2.0, IrrlichtNetCP v0.8, DirectX SDK Au-
gust 2007

1. The game server visualizes/renders the game characters, game
area, and game objects in 3D using its 3D engine.

2. The game server displays the player cursors when the current
input mode is pointing.

3. The game server is able to open network connection to receive
the packet data sent by the input clients. It processes the data
and calculates the character speed based on the input data and
the current game mode (single or group mode) and input mode
(pointing, tilting, and gamepad).

4. The game server manages the game objects including the col-
lision detection, removing or adding the game objects on the
game area.

5. The game server manages the game phase: starting, resetting,
and stopping the game.

6. The game server updates the game screen with rate 30 frame per
seconds.

7. The game server record the speed and position of all active game
characters during the game to a text file. This record data will be
used to analyze the character movement and player performance
(score) based on the input method.

5.2.4 Game Objects

The game is visualized in 3D. 3D environment is chosen because the
game area and the game character size should be adjustable (smaller
or bigger) depending on the size of audience. This is done by adjusting
the position of 3D camera in the game environment. The further 3D
camera from the game objects, the smaller the game objects will be
rendered and the wider the game area will be.

These are the description for each game objects:

56 implementation

1. The game characters and the game objects are implemented as
billboards. Billboard is a technique in computer graphics or 3D
game programming for rendering a 2D image in 3D world. The
image or sprite is rendered as a texture of a flat rectangular
plane. The plane is adjusted and rotated so it always faces the
camera. Billboard is chosen over a 3D model to reduce the num-
ber of polygons drastically so the system can render up to hun-
dreds of objects in 3D world without a heavy performance drop.

2. The game character is drawn using a billboard with width and
height of 256 unit (unit in 3D world). The billboard texture will
be the character sprites/images. Each sprite is a PNG image with
128 x 128 pixel size. The sprites will be changed for every frame
of the character animation.

3. Each game character has two animation sets: running and stand-
ing animation. Each animation set contains four sprites for each
moving direction. Since there are eight moving directions, the
total sprites are 32 for each animation set. The Figure 5.3 shows
several sprites from the game character.

4. The maximum character speed is 10 unit per frame, which is 600

unit per second. If the Wii Remote is used as a pointing device,
the character will run at the maximum speed when the distance
between the character and the cursor is more than 400 point. If
the Wii Remote’s tilt feature is used, the player has to tilt the Wii
Remote around 70 to 90 degrees to get the maximum speed.

5. On the gamepad mode, the character move using speed accel-
eration. The character will run at its maximum speed when the
player holds the directional button for 1.5 seconds.

6. The game object is also using a billboard. For this game, there
is only one type of object which only uses one still sprite (no
animation).

7. The game area is a 3D rectangular plane with the game charac-
ters and the game objects on top of it. The size of the plane is
1600 x 1600. As shown in Figure 5.4, the position of the 3D cam-
era is 1000 point away from the plane with 1000 point higher
from the plane. Therefore, the system can render the whole game
area/plane on the screen.

8. The game cursor is implemented using a 2D image. The cursor
image size is 64 x 64 pixel size and the system draws it to the
screen with different color for each player.

5.2 game server 57

Figure 5.3: A screenshot of the game character’s sprites

5.2.5 Game Server Modules

The game server contains several modules, such as modules for man-
aging the game character, processing the input data, and displaying
the game menu.

1. Game Manager, the main class (source code: Game.cs). It man-
ages all other classes, creating a 3D device using functions from
the Irrlicht 3D library, maintains the game loop/cycle at rate 60

frames/times per second, and changing the game status (start,
stop, pause, and game over).

2. Screen Manager, managing the screen menu and layout (source
code: Screen.cs). It displays the game menu, the game timer,
and player scores.

3. Input Manager, managing the network communication with the
input clients (source code: InputManager.cs). It handles a spe-
cial thread that receives all the binary data from the input client

58 implementation

Figure 5.4: Game area (a 3D plane) and a 3D camera. The plane is 1600 x 1600

size and the camera is 1000 pixel away from it. The whole area of
the game area will be rendered on the screen

via UDP protocol, translate the binary data to Wii Remote input
data so they are available for other modules.

4. Cursor Manager, a module which calculates, manages, and dis-
plays the player cursor when the Wii Remote is being used as
a pointing device. The source code files are CursorManager.cs

and WiiCursor.cs.

5. Camera Manager, a module for the 3D camera (source code:
Camera.cs). The module only handles a 3D camera and in this
game, the camera is fixed and does not move.

6. World Manager, managing the game area (source code: World-
Manager.cs). It creates the 3D plane for the area and provides the
area information so the game characters and the game objects
are always inside the game area.

7. Animation Set, loads and manages all the images file which are
going to be used for the character animation sprites. The source
code is AnimationSet.cs.

8. Character Manager. This module manages the game character
(source code: CharacterManager.cs). It also translates the Wii
Remote input data, which is provided by the module Input Man-
ager, to character speed and movement direction based on the
current input mode. It also animates and updates the character
position on the game area.
This module contains the implementation of character speed cal-
culation algorithms which are described on previous chapter.

5.2 game server 59

Figure 5.5: Game screenshot with four game characters, single mode, and
using tilt input mode.

9. Object Manager, managing the game objects (source code: Object-
Manager.cs). It adds/removes objects from the game area and
detects collision between the game character and the game ob-
ject.

10. System Recorder, an additional module which records the char-
acter speed and movement during the game (source code: System-
Recorder.cs). The data is logged to a text file and will be use
later for testing process.
The system recorder will start recording once the game starts. It
records the position and speed of all game characters every 0.5
second. Every time a character hit an item, the item position is
also recorded.
By analyzing the record data, the player scores and how well the
player controlling the movement of game character using the Wii
Remote will be known

6
T E S T I N G A N D E VA L U AT I O N

This chapter describes the testing procedure and the result of system
prototype implementation described on Chapter 5. The test result is
analyzed to check whether the system and the concept works properly
and to explore the user behaviour/performance playing group gaming
using Wii Remote.

6.1 testing goal

There are two aspects which will be tested and evaluated:

1. The system requirements: The ability of input client to make
connection with Wii Remotes and send the input data to server,
and the ability of the server to process the input data correctly.

2. Interaction testing: The users play the game using three inter-
action methods in two game modes (single and group mode).
There are five questions to be answered for this testing:

a) How well does the player control the character by pointing,
tilting, or using the gamepad?

b) How well does the player control the character in group
mode?

c) Which input method preferred by the players?

d) Which input method gives the player his/her best perfor-
mance?

e) How do the team communicate or coordinate when play-
ing using the group mode?

61

62 testing and evaluation

6.2 methodology

This is how the test process works:

1. The input client is tested to make connection with one to four
Wii Remotes.

2. When the connection is established, the Wii Remote is tilted and
its button is pressed. The input client should display the input
data and it will be compared with real status from the Wii Re-
mote (which button is pressed or which direction it is tilted).

3. The game server is tested to connect with two or three input
clients. Each input client will have two, three, or four connected
Wii Remotes. The game server will display the processed data
from the input client to the logging screen.

4. The participants are invited to play the game. Each participant
brings his/her own Wii Remote which will be connected to sev-
eral available input client machines.

5. Once the system is set (all Wii Remote is connected to the input
clients, and all input clients are connected to the game server),
the audience will be asked to do several input sequences (button
pushing, tilting, or moving the cursor). This process is to validate
the input data, and also to make the players getting used with
the controller and how to control the game.

6. The player plays the game using the three input methods (tilt,
point, and gamepad) and two game modes (single or group). For
each combination of input and game mode, three game sessions
will be played and tested.

7. The game server records the player score during the game. The
player behavior during the game will be noted as well.

6.3 testing environment

During the testing day, only six people and six Wii Remotes are avail-
able. Therefore, the testing procedure was modified in order to get the
best result using this limited resource.

6.3.1 Audience

The audience consists of six people: five male and one female. The age
range is from 22 to 29 years old. Four of them are students and the

6.3 testing environment 63

others have full time job in IT and design industry. They play game on
their Nintendo Wii one to three hours per week.

6.3.2 Hardware Settings

The testing process uses three laptops, which specification defined on
Table 6.1. All three machines are using Windows XP Home Edition.
The laptop Sony is the game server machine while two other laptops
are the input client.

Table 6.1: Laptop Specification Used for Testing

Laptop
Brand

Acer Aspire
2000

Acer Inspire
800

Sony Vaio
VGN-SZ23

Processor Intel Cen-
trino 1.5Ghz

Intel Cen-
trino 1.3Ghz

Intel Cen-
trino Duo
1.66Ghz

Memory 768Mb 512Mb 1Gb

Bluetooth
Hardware

Acer BT-600 Acer BT-700 built-in
Blueooth

Bluetooth
Driver

BlueSoleil
v5.0.5

BlueSoleil
v5.0.5

Built-in Blue-
tooth Driver

A 20 inch external LCD monitor is used for the game screen. For the
Sensor Bar replacement, a pair of candle tea light is used. Both candles
are put below the monitor with 10 cm apart. The audience sits in a
line which is about 2 meter away from the screen. The game server
machine is setup near the game screen while the other two machines
are setup behind the audience. The Figure 6.1 shows the position of
the game screen, audience, the machines, and the sensor bar during
the testing.

6.3.3 Input Clients Set Up

Since there are only six Wii Remotes and three machines available
for the testing, three combinations of hardware settings are set up to
test the input client. Each combination uses different number of input
client machines and the number of connected Wii Remotes on each
input client machine.

64 testing and evaluation

Figure 6.1: The Players, game screen, game server, and the input client ma-
chines (viewed from top)

These are the three combinations of the hardware setting used in the
testing:

1. Two input clients with three Wii Remotes. Each input client
machine is connected with three Wii Remotes.

2. Two input clients with four Wii Remotes. One of the input
client machines is connected with four Wii Remotes while the
other has only two Wii Remotes. This is to test the input client
handling the maximum number of Wii Remote.

3. Three input clients. The game server machine also functions as
an input client. Each machine, including the game server, will
have two connected Wii Remotes. This is to test the game server
with as many as possible connected input clients. It is also to test
the input client and game server on one machine.

The Figure 6.2 illustrates the hardware combinations used for test-
ing.

6.4 testing the input client

The input client is tested using three hardware settings combinations
which have been explained before. The success criteria for this testing
are:

1. The input client is able to make connection with The Wii Re-
motes

2. The input client is able to process and displays the Wii Remote
data correctly.

6.4 testing the input client 65

(a) Hardware Combination 1 (b) Hardware Combination 2

(c) Hardware Combination 3

Figure 6.2: The hardware setting combination used for testing.
(a) Two input clients with three Wii Remotes each, (b) Two input
clients with four and two Wii Remotes each, and (c) Three input
client, with game server and input client on the same machine.

6.4.1 Pairing Several Wii Remotes

The pairing process is done by using the Bluetooth software such
as Bluesoleil Bluetooth or Built-in Sony Bluetooth software. However,
there is a major problem when several Wii Remotes are trying to get
paired to the input client.

When the button ’1’ and ’2’ are pressed together, the Wii Remote
LEDs will blink for 20 seconds. While blinking, the Bluetooth software
will be able to detect the Wii Remote and put it into a list of detected
devices. From the list, the game operator has to choose which Wii
Remote he/she wants to pair with the input client.

If several input clients are close enough (less than 10m), it is possible
that a Wii Remote is detected and appears on two or more input client
machines. This Wii Remote will only be paired to only one input client.
However, sometimes the game operator accidentally connects the Wii

66 testing and evaluation

Remote to the wrong input client which in the end causing problem to
the player for getting the wrong global ID.

The Figure 6.3 shows a possible case of two Wii Remotes connected
to the wrong input clients.

Figure 6.3: Two Wii Remotes connect to the wrong input clients.
(a) The Wii Remote A will be connected to input client 1 while the
Wii Remote B will be connected to input client 2,
(b) Accidentally, the Wii Remote A is connected to input client 2.
Both player and game operator might not realize this case.

For example, say there are two input clients with ID one and two. A
player named Robert wants to connect to the input client 1 so he goes
to the game operator at the input client 1. At the same time, another
player named Julia is trying to connect to input client 2. She goes to
the game operator at the input client 2. They both activate the Wii Re-
mote pairing at the same time so both Robert’s and Julia’s Wii Remotes
appear at both input client machines.

Accidentally, the game operator connects/pairs Robert’s Wii Remote
to input client 2 which is supposed to connect with the input client 1.
The game operator thinks that it is Julia’s Wii Remote which is con-
nected to the input client 2. The game operator also connects Julia’s
Wii Remote to the input client one and thinks that it is Robert’s Wii
Remote.

This caused problem because the game operator gives them the
wrong global ID. Robert is being told that his global ID is 1, which
is false since his Wii Remote global ID is 4 and actually connected to
input client 2 (not to the input client 1). Julia, who has been told her
that global ID is 4, has her Wii Remote accidentally connected to input
client 1 and now has global ID 1.

6.4 testing the input client 67

This problem can be solved if the game operator knows this fault
connection and immediately exchange Julia’s Wii Remote with Robert’s.
However, it is hard to tell which Wii Remote is connected to a speci-
fied input client since every Wii Remote has the same name when it
is identified by the machine. The only differentiator is the Bluetooth
address which is hard to remember.

The only solution which was done during the testing was connecting
the Wii Remote one device at a time. It is not a big problem because
there were only six Wii Remotes. However, this is not the case for a
real large group gaming which could have up to 50 Wii Remotes. The
pairing process of a big number of Wii Remotes will be a hard and
time consuming process.

6.4.2 Displaying the Wii Remote Data

After all the Wii Remotes are connected to the input clients, the play-
ers are instructed to tilt and push the Wii Remote buttons at a certain
way. The input client machine will display the raw data from the Wii
Remote and it’s compared with the player movement or Wii Remote
status. This is done in order to test if input client process the Wii Re-
mote data correctly.

These are the instructions which are given to the audience, including
the expected values from the input client:

1. Tilt to the left. The player holds the Wii Remote at its base po-
sition (stands vertically with A button facing the player) and
slowly tilts it to the left until it reach an angle around 90 degree.
The X value from the motion sensor will slowly change from
nearly 0 to nearly -1 and reach -1 when the angle is equal or
bigger than 90 degree. The player then tilts the Wii Remote back
to its base position, and the X value back to 0.

2. Tilt to the right. The criteria are the same as before, but the
player tilts to right hand side. The motion sensor value X will
slowly change from 0 to +1.

3. Tilt forward. The player holds the Wii Remote at its base posi-
tion and slowly tilt it to the front (the same direction with where
the player is facing to) until it reach an angle around 90 degree.
The Z value from the motion sensor will slowly change from
nearly 0 to nearly +1 and reach +1 when the angle is equal or
bigger than 90 degree. The player then tilts the Wii Remote back
to its base position, and the Z value is back to 0.

68 testing and evaluation

4. Tilt backward. The criteria are the same as tilting the Wii Re-
mote forward, but the player tilts the Wii Remote backward. The
motion sensor value Z will slowly change from 0 to -1.

5. Push the button A. The player press and hold the button A until
he/she is being told to release it. Only the button A is tested
since it is the only button used in the game.

6. Points to the candles. The user points the Wii Remote to the can-
dles, and move around a little bit until the input client can detect
both IR points. The input client will give a pair of coordinates if
both IR points are detected. The cursor function is not tested on
this phase because it is the game server which is able to process
the IR data to cursor position. This will be tested later, on game
server testing.

The result of this test proved that the three combinations of input
clients are able to connect and process the Wii Remote. When the Wii
Remote is tilted to the left or right, the displayed data shows that the
motion sensor X has a value ranged between -1 when tilted to the left
and +1 when tilted to the right. The motion sensor Z shows that it has
a value ranged between -1 to +1 when the Wii Remote is tilted to the
back and front.

There is a case that one player holds the Wii Remote at the wrong
position so the X value is reversed (-1 for tilting to the right and +1

for the opposite direction). Another case is when the player tilts the
Wii Remote too fast or with power so the X value is bigger than +1

or smaller than -1. This is because the Wii Remote is not only able
to detect tilt but also the force which is generated by moving the Wii
Remote with power (like swinging or shaking the Wii Remote).

The input client machines have also passed the button pushing test.
All input clients in all combination are able to detect if the button A
is being pressed or not. There are no noticeable delays between the
button pressing and the input client shows the button status.

The input client is also able to show that the Wii Remote is able
to detect two IR points. However, most of the players (five out of six
players) having a little difficulty in finding the spot where the Wii
Remote can detect two IR points.

6.5 testing the game server

For the first phase, the game server is tested using the same method
as the input client. The players tilt the Wii Remote, push the button
’A’, and point the Wii Remote to the candles. The game server is also

6.5 testing the game server 69

able to display the received input data from the input clients before
it’s processed into character speed and direction. The displayed result
will be compared with the expected values. This is to check if the input
data sent by the input clients has received correctly by the game server.

The game server has passed the first phase of the test. The game
server displays the same value as the one displayed on the input clients.
This is a proof that the input clients are able to send the data to the
game server and the game server is able to receive it correctly. This test
proves that it is possible to have the input client and the game server
on one machine without sacrificing the game server performance.

The second phase is to test the cursor function. The player is in-
structed to move the cursor around the game screen. This is also to
make them get used to controlling the cursor. They have to move the
cursor from center to the top left corner of the screen, and move slowly
to the top right corner, bottom right, bottom left, top left, and back to
the center (Figure 6.4).

Figure 6.4: Cursor path during movement testing. The user has to point the
and move the cursor to the specified path during movement test

Since there are only six players, the test is done by one player at a
time. Before the test begin, each player is given chance to warm up by
trying to move the cursor until he/she is ready.

All players are able to finish the task (able to move the cursor to all
given points). However, based on the observation during the testing,
the cursor movement is not very smooth. This caused difficulty for
most players. All players agree that controlling the cursor is hard.

These are the common problems which make the cursor movement
not smooth and hard to control:

70 testing and evaluation

1. The cursor movement feels jumpy. Sometimes the cursor sud-
denly jumps to another position.

2. Non-responsive cursor. The cursor stops moving/responding to
the Wii Remote movement.

3. Too sensitive. The cursor moves too much by a very small move-
ment. This will make the Wii Remote movement range much
smaller and the cursor will harder to control.

These problems will be discussed on Section 6.7.

6.6 play test

All players play the game together and only the hardware combina-
tion with two input clients (each with four and two Wii Remotes) is
used to run the game. For each input method, the player plays three
game sessions (40 seconds each) and three game modes: single mode,
group mode with 2-player team, and group mode with 3-player team.
Since there are three input modes, the audience plays 27 game sessions
during the testing.

The game server records the game character movement and also the
player score during the game. The player behavior is also noted. For
every three game sessions, each player is asked these three questions:

1. Is it easy to control the game character using this input method?

2. How do you like this input method compare to previous input
method?

3. Any additional comment about this input method?

These questions are for the general opinion of the user about the
input method. In the end of the game (after all game sessions are fin-
ished), every player is asked again another questions:

1. Which input method do you like the best?

2. Do you find the game is too easy or too hard?

3. Any additional comments about the game?

These questions are asked in order to get the player’s opinion about
the game design and using Wii Remote for group gaming. On the
following subsections, the test result is presented based on the input
method.

6.6 play test 71

6.6.1 Input Method Pointing

Table 6.2 shows the score of testing the game using the Wii Remote as a
pointing device. Every time a player collects a game item, he/she will
gain 10 point score. The game is played in single player mode, group
mode with two players on each team, and group mode with three
players on each team. For every game mode, three game sessions, with
40 seconds each, are played and every player’s score is recorded.

Table 6.2: Players’ scores using the pointing method

By average, the player score in this testing is the lowest one compare
to the next two other input methods. All six players commented that it
is really hard to control the character movement using the cursor and
they don’t like this input method.

The previous problems of jumpy, non-responsive, and too sensitive
cursor make the character movement harder to control. Controlling
the cursor movement itself is already a difficult thing to do, and not
to mention that the player has to maintain the distance between the
character and the cursor.

Two players feel confused in controlling the game character. They
say that pointing cursor while holding the A button to make the char-
acter running is not an easy task for them. It feels unnatural to drag
the character around.

Sometimes, the cursor suddenly disappears from the screen which
makes the game character stop moving. This problem occurs when the
cursor position is near the edge of the screen, which makes it even
harder to move the game character around the edge or border area.

This is a problem regarding the range of Wii Remote IR sensor and
also the algorithm of cursor calculation. If the player moves the Wii

72 testing and evaluation

Remote too wide, then the Wii Remote will lose one or both IR points.
Since the cursor calculation requires both IR points, the new cursor
position cannot be calculated.

Figure 6.5: Two game characters movement controlled by using the pointing
method. The number of characters in this Figure is reduced to two
characters to make it easy to understand.

However, the player quickly realizes this problem and learns how to
adjust. After the first game session using the pointing method, most
players avoid moving their cursor near the edge of the screen. They
only move the cursor around the center of the screen. From the recorded
data, most of the game characters only move in the middle of the game
area and abandon all game items near the border area.

The Figure 6.5 shows the movement of two game characters played
using the pointing method. The game area is viewed from top and the
number of tracks is reduced to two characters to make the figure easy
to understand.

In the group mode, it is even harder to control the character. Based
on the test result, the more players in a team, the slower or the more
chaotic the character movement will be.

6.6 play test 73

6.6.2 Input Method Tilting

The Table 6.3 shows the player’s score using the tilting method for
playing the game.

Table 6.3: Players’ scores using the tilting method

By average, the player scores are much better than the input method
pointing. The player is able to control the character movement fluently.
Using this input method, the players start to enjoy the game and more
cheerful than the previous input method (pointing).

All six players like this input method. They said that the control is
more natural, easy to understand, and more precise. It is easy to make
the character move faster, slower, or to stop the character.

From the recorded data, the character movement is more fluent and
smooth. Unlike in the pointing method, the character is able to move
to the corner or to the area near the edge area. See Figure 6.6 for the
character movement diagram.

In the group mode, the player score are slightly lower than the single
mode. The more players in a team/group, the lower the average score
will be, although the test result does not show a big difference between
2-players group and the 3-players group.

For the group mode, the average score using this input method is
the highest compare to the other two input methods. This is because
the player is better in controlling speed and direction. All players also
agree that this group mode is far more enjoyable than the group mode
using the input method pointing or gamepad.

The player coordinates with the other team members by using verbal
communication like shouting for a suggestion of the best direction. The
character tends to move to the nearest game item.

74 testing and evaluation

Figure 6.6: Two game characters movement controlled using the tilting
method. Unlike the previous method, the characters are able to
move to area near the border/edge of the game area.

6.6.3 Input Method Gamepad

The Table 6.4 shows the score from playing the game by holding the
Wii Remote horizontally and only pushing the buttons, as if it is a
gamepad.

The average player score for single mode is the highest compare
to the other two input method for the same mode. All players’ best
scores in single mode are from this input method. However, five out
of six players still prefer the tilt method over using the gamepad. They
feel uncomfortable holding the controller in the sideway position.

All of them agree that it is much easier to control the character us-
ing the gamepad method. Controlling the character movement is more
precise and predictable. Unlike in pointing and tilting method, the
character will move to the direction exactly to a specified or given di-
rection by the player. This will make the player feel they have more
control in character movements.

For example, pressing the left directional button will make the char-
acter move to the left. In tilt method, tilting the Wii Remote to the left
sometimes make the character moves a little bit to the upper-left and
not exactly to the left.

Unlike the single mode, the average score for the group mode using
the gamepad is lower than the tilting.

6.7 analyzing the problems 75

Table 6.4: Players’ scores using the gamepad/sideway method. No tilting or
pointing, just pushing the Wii Remote’s directional buttons

During the 2-players-team mode, it is quite often that the game char-
acter suddenly stops moving. This is because both players of the team
is giving two opposite movement directions at the same time, thus the
total sum of both speed vectors is zero.

This is very likely to happen in gamepad mode compared to tilt
or cursor mode. In the tilt or cursor mode, the character can move
to any direction and with any velocity between zero to the maximum
speed. In gamepad mode, the character movement is limited to eight
directions and the speed is only zero or the maximum speed.

In 3-players-team mode, this case never happens. The only way to
get a zero-sum speed in 3-player team if and only if all three players
are moving to three different directions with 120 degree angle between
each direction. It is not possible since there are only eight moving direc-
tions with 45 degree difference each. Therefore, 120 degree difference
for each player will not be achieved and the character will never get
zero-sum speed vector.

6.7 analyzing the problems

In this section, the problem of Wii Remote cursor and connecting and
pairing the Wii Remote to the input client will discussed. Then, the
game design aspect will be analyzed for future improvement.

6.7.1 Unsteady Cursor Movement

Unsteady or jumpy cursor is a problem when the cursor makes sud-
den movement to another position. It is also a common problem on
several Wii commercial games. Red Steel, one of the First Person Shoot-

76 testing and evaluation

Figure 6.7: Two game characters movement controlled using the gamepad
method. The number of tracks is reduced to two characters to
make the figure easy to understand.

ing games for Nintendo Wii by Ubisoft, is controlled by pointing the
Wii Remote. A video on Youtube (http://www.youtube.com/watch?v=
T3lVFEuqStQ) shows a player playing the game Red Steel on his Nin-
tendo Wii. The cursor has jumpy problem which makes the aiming
harder.

From several game forums like GameSpot (http://www.gamespot.
com), this jumpy cursor movement could occur if the Sensor Bar is
placed too near or too far from the Wii Remote, or there are some
other interfering IR sources like direct sunlight, Christmas lights, or
incandescent light bulb. Even a reflection from a shiny marble table
near the Sensor Bar could interfere.

In this project testing, there was a case that the Wii Remote ran out
of battery during the game. When it’s on low battery power, the Wii
Remote will not be able to send a stabile input data.

These are two common reasons of the Wii Remote fail to detect two
IR points:

1. The IR source is not strong or stabile enough. Once the game is
already 30 minute, the candle length will be half and the light
is not clearly visible to the Wii Remote. This can be fixed by
replacing the candles with stronger and stabile IR sources like
IR LEDs.

http://www.youtube.com/watch?v=T3lVFEuqStQ
http://www.youtube.com/watch?v=T3lVFEuqStQ
http://www.gamespot.com
http://www.gamespot.com

6.7 analyzing the problems 77

Figure 6.8: A screenshot of the game Red Steel, one of the first-person-
shooter game for Nintendo Wii. Image is taken from http://www.

redsteelgame.com/

2. The Wii Remote is too close to the IR sources so both IR points
will be harder to detect. The Wii Remote also could easily lost
one of its two detected IR points when moved with big range.
Sometimes the player unconsciously stretched their arms too far
while pointing with the Wii Remote. Even if the player sits 2

meter away from the candle, it will make the distance between
the Wii Remote and the IR sources shorter.

A solution for a better cursor movement is to use a better algorithm.
The current used algorithm requires two IR points to calculate the
cursor position. This algorithm is not suitable for controlling the game
character since it is not stabile and very sensitive, which make the
character movement hard to control.

There are several algorithms still able to calculate the cursor posi-
tion even if the Wii Remote has lost one of its two IR points. Some
algorithms even use the values from motions sensor to predict the cur-
sor movement. The cursor value needs to have a threshold to prevent
it to be too sensitive to tiny movement like a small shake. GlovePIE
is one of the good sources which provides several scripts for that pur-
pose [Ken07].

6.7.2 Game Design Aspect

Two players were confused in controlling the game character using the
pointing method (cursor). Both has a little experience in gaming before

http://www.redsteelgame.com/
http://www.redsteelgame.com/

78 testing and evaluation

and only play their Nintendo Wii about one hour per week. One way
to solve this difficulty is to make the player to press the button only
one time (instead of holding it) in order to move the character.

The player only has to push the button once to move the character
to the specified point. The player prefers the sense of giving order to
the game character to move to the pointed position rather than drag-
ging the character using their Wii Remote. This is more natural since
pointing the Wii Remote while holding a button on one hand will be
too hard for inexperienced players.

That is also the reason that on some Wii Games which rely heavily
on pointing (such as Red Steel) use an additional hardware, the Nin-
tendo Nunchuk. The player holds the Nunchuk with the other hand.
On this Nunchuk, there is an analog joystick which can be used to
control the character movement.

Figure 6.9: Nintendo Nunchuk, an additional hardware for Wii Remote, is
equipped with a analog joystick, one button, and also with motion
sensing [Nin07]

The game feedback like score and game timer is also another prob-
lem. Most of the time, the player is unaware of the game timer and
their own or other player’s score. Sometimes they are surprised that
the game is suddenly over and they just realized that they have won
the game.

The players are too busy tracking and controlling the game character
and targeting the game objects. In the pointing method, the players
also have to track the cursor movement. Displaying the score on top
area of the screen is too far from the player’s focus, which are their
own game character and the surrounding area near the character.

6.8 conclusion 79

For a better user interface, the game needs an indicator which does
not require the user to move their eye focus away from the game char-
acter. One solution for game timer feedback is to use non-visual feed-
back like beeping the sound or vibrating all Wii Remotes when the
game will be finished in less than 10 seconds.

For the game score, one solution is to display it on top of the game
character’s head. To simplify the visualization, instead of score, only
the player ranking is displayed on top of the character. The player rank-
ing is based on the rank of the player score during the game play and
it may change during the game play. By displaying the ranking, the
player will be more motivated to defend or to make his/her ranking
higher.

Figure 6.10: Game character with the ranking displayed on top of the charac-
ter’s head

6.8 conclusion

These are the conclusions based on comparing the average scores of
the players, the player’s answers of the given questions, and the noted
behavior during the testing.

The Table 6.5 and the chart on Figure 6.11 show the average scores
of all players based on the game mode (single/group mode) and the
three input methods. These are the conclusion based on the results:

1. For the single mode, the input method gamepad gives the high-
est average player score, followed by tilting and pointing. How-

80 testing and evaluation

Table 6.5: Average player scores from the experiment

Figure 6.11: Player’s average score. The number of players is six and three
game sessions are played for each game mode.

ever, during the group mode (with two or three players on each
team), the input method tilting gives the highest score compare
to gamepad. The pointing method gives the worst score for both
single and group modes.

2. Based on the player’s opinion, five out of six players prefer the
tilting over the input method gamepad.

3. All six players don’t like the pointing method.

4. Except for the tilt mode, the average score for the group mode
is always lower than the single player mode. For the gamepad
mode, the players score even drops drastically from 468.11 in
single mode to 323.33 in group mode. This is because in the
gamepad mode, the character is likely to stop moving because of
zero-sum vector speed (as explained on subsection 6.6.3) which

6.8 conclusion 81

makes the character suddenly stops and the movement becomes
less smooth.

5. In the group mode, the more player in a team, the lower the score
will be. This is because the character movement is determined by
several players. Each player can only control maximum half or
a third of the character speed, depends on the number of player
in a team. In order to the game character to move at a maximum
speed, all players in a team must tilt the Wii Remote or move the
cursor to the same direction.

6. Despite of the lower score, all six players enjoy the group mode.
They said that it is more fun to play in a team, especially when
they are allowed to shout.

7
C O N C L U S I O N

This final chapter describes the conclusion and several improvements
for the future development of large group gaming utilizing Wii Re-
mote.

7.1 experiment results

1. Based on the experiment result, the game server is able to con-
nect up to three input clients, with each input client has up to
four connected Wii Remotes. Theoretically, the prototype is able
to handle up to twelve connected Wii Remotes.

2. The large group gaming can be played using the three interac-
tion methods which can be done by Wii Remote: pointing, tilting,
and using the Wii Remote as if as it is a gamepad (only pushing
the buttons).

3. For the pointing method, it is important to have:

a) a good algorithm to calculate the cursor position,

b) a stabile and strong IR sources, and

c) a good IR source placement so it can be reached by the Wii
Remotes from a wider range.

4. The gamepad-style method gives the player more precise move-
ment control. This is because most gamers are already familiar
with the gamepad input scheme (controlling the movement by
pressing the directional pad/button). Holding the Wii Remote
in sideways/gamepad mode for long time is not so convenient
for most players.

83

84 conclusion

5. Although the gamepad mode gives the highest player score, most
players prefer the tilting method. The tilting method gives more
smooth and fluent movement control. It is easy to use and the
user feels more natural tilting the Wii Remote to control the
game character.

7.2 future improvements

These are several points for the improvement of this project or further
study regarding large group gaming using Wii Remote.

1. Using Wii Remote for the large group gaming is an expensive so-
lution for group gaming. It needs more resources since one input
client machine is needed for every four Wii Remotes. For exam-
ple, five PCs are needed to support 20 users; therefore 25 PCs
would be needed for 100 users. This problem might be solved
using the advance Bluetooth technology which can connect up
to 255 devices (compared to the current Bluetooth technology
which is limited to maximum seven devices).

2. A better system or mechanism is needed to improve the pair-
ing process between the Wii Remote and the PC (input client
machine). On the prototype, the pairing process is a hard and
time consuming process. The Wii Remotes have to be paired one
by one. Pairing several Wii Remotes simultaneously, could cause
the problem of connecting the Wii Remote to the wrong input
client.

3. The new system should be able to manage Wii Remotes using its
Bluetooth address. It should be a lower level application which
can access the operating system’s HID interface and the Blue-
tooth driver, so it will be able to pair the Wii Remote without
using external Bluetooth software.

4. The system needs to be tested with a bigger audience (more than
60 players). The current prototype is only able to handle up to
16 game characters (up to 48 players with 3-player-team mode).
Therefore, several modifications on the game server need to be
done on the prototype, especially on the modules related to the
game characters.

5. By supporting a larger number of audience, there would be four
testing possibilities:

a) The machine performance issue, whether one game server
is enough to handle all data sent by more than 30 input
clients.

7.2 future improvements 85

b) Bluetooth interference, whether it is going to be a frequency
or interference problem if there are 50 Wii Remote sending
or connecting at the same time via Bluetooth.

c) The group mode, to test how many maximum player should
be in one group.

d) The game visualization, how small the game character or
object should be if there will be 50 game characters at the
screen at the same.

A
A P P E N D I X : I M P L E M E N TAT I O N A N D S O U R C E
C O D E S

This will contain some parts of the source code of the implementation.

a.1 pairing a wiimote with computer

Before the programming library can connect and access and the Wii
Remote input data, the Wii Remote needs to get paired with the PC.
This has to be done using the Microsoft Windows Bluetooth software
or external software.

a.1.1 Microsoft Windows Bluetooth Software

This is step-by-step instructions how to pair/connect a Wii Remote to
a PC using the Microsot Window’s Bluetooth software.

1. Make sure the PC’s Bluetooth hardware is on.

2. Go to Control Panel » Bluetooth Devices and click "Add" a new
Bluetooth Device.

3. Hold down the button ’1’ and ’2’ on the Wii remote. The LEDs
will start blinking and the Wii Remote is ready to be paired.

4. Check the box next to "My device is set up and ready to be
found", then "Next". The software will search for the available
Bluetooth Devices and put them into the list.

5. The Wii Remote will be identified by a device name Nintendo
RVL-CNT-01. Click on it and then click the button "Next".

6. Select "Don’t use a passkey", then click "Next". You may need to
hold down the Wii Remote’s button 1 and 2 again here.

87

88 appendix : implementation and source codes

The Microsoft Windows will install and add the Wii Remote to the
connected devices. For connecting another Wii Remote, repeat these
steps on it.

To test if the Wii Remote is connected, use the small test application
included with the Brian Peek’s Wii Remote library. Go to the Section
A.3.1 below for more details.

Depends on the Bluetooth hardrware and driver, pairing the Wii Re-
mote using the Microsoft Bluetooth software may fail. If it fails, please
use other Bluetooth hardware or software. Please check the compatible
Bluetooth hardware and software on the list from http://www.wiili.

org/index.php/Compatible_Bluetooth_Devices or http://wiibrew.org/
wiki/List_of_Working_Bluetooth_Devices.

a.1.2 Bluesoleil Bluetooth software

This is step-by-step instructions how to pair/connect a Wii Remote to
a PC using the Bluesoleil Bluetooth software, which is used in this
project.

1. Make sure the PC’s Bluetooth hardware and the Bluesoleil soft-
ware are on.

2. Hold down the button ’1’ and ’2’ on the Wii remote. The LEDs
will start blinking and the Wii Remote is ready to be paired.

3. While the lights are blinking on the WiiMote click on the orange
sphere in the BlueSoleil program. It will search for the avail-
able Bluetooth Devices and will display them around the orange
sphere on the program’s display.

4. The Wii Remote will be identified by a device name Nintendo
RVL-CNT-01. Right click it and select Connect » textbfBluetooth
Human Interface Device Service (Figure A.1).

5. The program will automatically install drivers for the WiiMote.
Eventually you will be asked to either Continue or Stop the in-
stallation because this has not passed Windows Logo testing.
Click Continue Anyway.

6. A successful pairing will have a green line attached from you
WiiMote to the orange sphere (Figure A.2)

To test if the Wii Remote is connected, use the small test application
included with the Brian Peek’s Wii Remote library. Go to the Section
A.3.1 below for more details.

http://www.wiili.org/index.php/Compatible_Bluetooth_Devices
http://www.wiili.org/index.php/Compatible_Bluetooth_Devices
http://wiibrew.org/wiki/List_ of_Working_ Bluetooth_Devices
http://wiibrew.org/wiki/List_ of_Working_ Bluetooth_Devices

A.2 compiling the project source codes 89

Figure A.1: Pairing a Wii Remote using Bluesoleil

Figure A.2: A successful Wii Remote pairing using Bluesoleil

a.2 compiling the project source codes

a.2.1 Downloading the Files

The source code of this project can be downloaded from urlhttp://www.abiamy.com/abiyasa/thesis/.
There you can see two files: WiiGroup-InputClient.zip and WiiGroup-GameServer.zip.
The WiiGroup-InputClient.zip contains the binary and the source
code of the input client and the other file is for the game server.

90 appendix : implementation and source codes

a.2.2 Additional Libraries

Before you can start running the Game Server and the Input Client,
you have to install these additional runtime libraries:

1. Microsoft DirectX 9.0c Runtime.

2. Microsoft .Net 2.0.

Both can be downloaded from the Microsoft website. If you want to
re-compile the source code, these libraries are required:

1. DirectX SDK. This project uses DirectX SDK version August 2007

which can be downloaded at Microsoft DirectX SDK webpage1.

2. IrrlichtnetCP. A 3D graphics for .Net. This project uses the ver-
sion 0.8 which can be downloaded at http://sourceforge.net/
project/showfiles.php?group_id=176021&package_id=203751

3. Microsoft Visual Studio 2008 Express Edition C#. This IDE is
needed to open the project files which are included in this project
source code files.

a.3 brian peek wiimote library

You can download the latest version of this library at Brian Peek per-
sonal website (http://www.brianpeek.com) or directly at his Wii Re-
mote project page (http://www.brianpeek.com/blog/pages/wiimotelib.
aspx or http://www.wiimotelib.org/).

a.3.1 Testing the Connected Wii Remotes

If you download the binary version of the library (not the source code),
you will get a small test application called WiimoteTest (on WiimoteLib
v.1.5.2). Execute that file to test the connected Wii Remote. The appli-
cation will connect, get, and display the data from the Wii Remote. It
shows all functionalities which are supported by this library.

a.3.2 Connecting Wii Remotes

Before connecting, we should call the FindAllWiimotes(). This method
will find all the paired WIi Remotes and put them into a list.

1 Microsoft DirectX SDK webpage: http://www.microsoft.com/downloads/details.

aspx?FamilyID=529f03be-1339-48c4-bd5a-8506e5acf571

http://sourceforge.net/project/showfiles.php?group_id=176021&package_id=203751
http://sourceforge.net/project/showfiles.php?group_id=176021&package_id=203751
http://www.brianpeek.com
http://www.brianpeek.com/blog/pages/wiimotelib.aspx
http://www.brianpeek.com/blog/pages/wiimotelib.aspx
http://www.wiimotelib.org/
http://www.microsoft.com/downloads/details.aspx?FamilyID=529f03be-1339-48c4-bd5a-8506e5acf571
http://www.microsoft.com/downloads/details.aspx?FamilyID=529f03be-1339-48c4-bd5a-8506e5acf571

A.3 brian peek wiimote library 91

Figure A.3: Brian Peek’s Wiimote Tester application

Listing A.1: Listing the paired Wii Remote using Brian Peek Library

WiimoteCollection wiimoteCollection = new

WiimoteCollection();

try

{

wiimoteCollection.FindAllWiimotes();

}

catch(WiimoteNotFoundException ex)

{

// Handle error

MessageBox.Show(ex.Message, "Wiimote not found error ",
MessageBoxButtons.OK, MessageBoxIcon.Error);

}

catch(Exception ex)

{

// Handle error

MessageBox.Show(ex.Message, "Unknown error ",
MessageBoxButtons.OK, MessageBoxIcon.Error);

} �
The paired Wii Remotes are now stored on the list wiimoteCollection.

Now we have to connect each Wii Remote from the wiimoteCollection.
The Wii Remote object can be accessed from the wiimoteCollection by
using wiimoteCollection[x], where x is the index of the Wii Remote
in the list.

92 appendix : implementation and source codes

This code below is to make connection with all Wii Remote objects
on the wiimoteCollection.

Listing A.2: connecting Wii Remote using Brian Peek Library

bool isWiimoteConnected = false;

for (int i = 0; i < wiimoteCollection.Count; i++)

{

try

{

wiimoteCollection[i].Connect();

isWiimoteConnected = true;

numOfConnectedWiimotes++;

}

catch(Exception ex)

{

MessageBox.Show(ex.Message, "Error in connecting Wiimote−"
+

i.ToString(), MessageBoxButtons.OK, MessageBoxIcon.

Error);

isWiimoteConnected = false;

}

// turn on the Wii Remote’s LED

if (isWiimoteConnected)

{

switch (i)

{

case 0:

wiimoteCollection[i].SetLEDs(true, false, false,

false);

break;

case 1:

wiimoteCollection[i].SetLEDs(false, true, false,

false);

break;

case 2:

wiimoteCollection[i].SetLEDs(false, false, true,

false);

break;

case 3:

wiimoteCollection[i].SetLEDs(false, false, false,

true);

break;

A.3 brian peek wiimote library 93

}

// Set the kind of input data from Wii Remote

wiimoteCollection[i].SetReportType(InputReport.IRAccel,

true);

}

} �
a.3.3 Reading Wii Remote Data

From the code A.2, we know how to set turn on/off the Wii Remote
LED by using wiimoteCollection[i].SetLEDs().

The code below shows how to get the Wii Remote input data.

Listing A.3: Getting the Wii Remote data using Brian Peek Library. The data
is processed and sent to the game server

// Structure returned by the Wii Remote

WiimoteState theWiimoteState;

// The Wii Remote Button status

WiimoteLib.ButtonState theButtonStatus;

// The Wii Remote motion sensor values

WiimoteLib.AccelState theMotionStatus;

// The Wii Remote IR status and points

WiimoteLib.IRState theInfraredStatus;

// Prepare the packet data which will be sent to the game server

byte[] sendBytes = new byte[64];

// the first byte is for the input client ID

sendBytes[0] = clientCode;

bool buttonA, buttonB;

bool dpadUp, dpadDown, dpadLeft, dpadRight;

byte dpadStatusByte;

double motionX, motionY, motionZ;

bool ir1enabled, ir2enabled;

int ir1x = 0, ir1y = 0, ir2x = 0, ir2y = 0;

StringBuilder buttonStatus = new StringBuilder(64);

// read the wiimote data

for (int i = 0; i < numOfConnectedWiimotes; i++)

{

theWiimoteState = wiimoteCollection[i].WiimoteState;

94 appendix : implementation and source codes

// get the button status

theButtonStatus = theWiimoteState.ButtonState;

buttonA = theButtonStatus.A;

buttonB = theButtonStatus.B;

sendBytes[1] = (byte)i;

sendBytes[2] = (byte)(buttonA ? 1 : 0);

sendBytes[3] = (byte)(buttonB ? 1 : 0);

// get the motion status

theMotionStatus = theWiimoteState.AccelState;

motionX = theMotionStatus.Values.X;

motionY = theMotionStatus.Values.Y;

motionZ = theMotionStatus.Values.Z;

// convert them into bytes

byte[] xdata = BitConverter.GetBytes(motionX);

byte[] ydata = BitConverter.GetBytes(motionY);

byte[] zdata = BitConverter.GetBytes(motionZ);

for (int j = 0; j < 8; j++)

{

sendBytes[4 + j] = xdata[j];

sendBytes[12 + j] = ydata[j];

sendBytes[20 + j] = zdata[j];

}

// Get the first IR point

theInfraredStatus = theWiimoteState.IRState;

ir1enabled = theInfraredStatus.IRSensors[0].Found;

if (ir1enabled)

{

sendBytes[28] = (byte)1;

ir1x = theInfraredStatus.IRSensors[0].RawPosition.X;

ir1y = theInfraredStatus.IRSensors[0].RawPosition.Y;

byte[] irxdata = BitConverter.GetBytes(ir1x);

byte[] irydata = BitConverter.GetBytes(ir1y);

for (int j = 0; j < 4; j++)

{

sendBytes[29 + j] = irxdata[j];

sendBytes[33 + j] = irydata[j];

}

}

else // no IR 1 data is available

{

sendBytes[28] = (byte)0;

A.3 brian peek wiimote library 95

}

// Get the second IR point

ir2enabled = theInfraredStatus.IRSensors[1].Found;

if (ir2enabled)

{

sendBytes[37] = (byte)1;

ir2x = theInfraredStatus.IRSensors[1].RawPosition.X;

ir2y = theInfraredStatus.IRSensors[1].RawPosition.Y;

byte[] irxdata = BitConverter.GetBytes(ir2x);

byte[] irydata = BitConverter.GetBytes(ir2y);

for (int j = 0; j < 4; j++)

{

sendBytes[38 + j] = irxdata[j];

sendBytes[42 + j] = irydata[j];

}

}

else // no IR2 data

{

sendBytes[37] = (byte)0;

}

// get the D-pad buttons status

dpadStatusByte = (byte)0;

dpadUp = theButtonStatus.Up;

dpadDown = theButtonStatus.Down;

dpadLeft = theButtonStatus.Left;

dpadRight = theButtonStatus.Right;

if (theButtonStatus.Up)

{

dpadStatusByte |= (byte)0x01;

}

if (theButtonStatus.Down)

{

dpadStatusByte |= (byte)0x02;

}

if (theButtonStatus.Left)

{

dpadStatusByte |= (byte)0x04;

}

if (theButtonStatus.Right)

{

dpadStatusByte |= (byte)0x10;

}

sendBytes[46] = dpadStatusByte;

96 appendix : implementation and source codes

// Show the wiimote status and data to the form

buttonStatus.Length = 0;

if (buttonA)

{

buttonStatus.Append(" [A] ");
}

if (buttonB)

{

buttonStatus.Append(" [B] ");
}

if (dpadUp)

{

buttonStatus.Append(" [Up] ");
}

if (dpadDown)

{

buttonStatus.Append(" [Down] ");
}

if (dpadLeft)

{

buttonStatus.Append(" [Left] ");
}

if (dpadRight)

{

buttonStatus.Append(" [Right] ");
}

string motionStatus = "X: " + motionX.ToString("F") +

" Y: " + motionY.ToString("F") + " Z: " + motionZ.ToString("F
");

string infraredStatus = " ";
if (ir1enabled)

{

infraredStatus += "IR1 : " + ir1x.ToString() + " , " + ir1y.

ToString() + " ";
}

if (ir2enabled)

{

infraredStatus += " IR2 : " + ir2x.ToString() + " , " + ir2y.

ToString() + " ";
}

DisplayWiimoteData(i + 1, buttonStatus.ToString(), motionStatus

, infraredStatus);

// send it to the server (if enable)

if (isSendToServer)

{

A.3 brian peek wiimote library 97

// Send the data to server

networkClient.Send(sendBytes, sendBytes.Length, sendPoint);

}

} �
a.3.4 Disconnecting Wii Remotes

Finally, we need to disconnect the Wii Remotes from the application.

Listing A.4: Disconnecting the Wii Remotes using Brian Peek Library

for (int i = 0; i < wiimoteCollection.Count; i++)

{

// turn off LED

wiimoteCollection[i].SetLEDs(false, false, false, false);

wiimoteCollection[i].SetReportType(InputReport.Buttons, false);

wiimoteCollection[i].Disconnect();

}

wiimoteCollection = null; �
For more details or complete documentation of Brian Peek’s library,

please check the Brian Peek WiimoteLib page (http://www.brianpeek.
com/blog/pages/wiimotelib.aspx or http://www.wiimotelib.org/).

http://www.brianpeek.com/blog/pages/wiimotelib.aspx
http://www.brianpeek.com/blog/pages/wiimotelib.aspx
http://www.wiimotelib.org/

B I B L I O G R A P H Y

[Ada06] Ernest Adams. The designer’s notebook: Ps3 versus Wii
- the designer’s perspective. http://www.gamasutra.com/

features/20061222/adams_01.shtml, December 2006. (Cited
on page 14.)

[Bel07] Justin Ryan Belcher. Embodied interfaces for interactive per-
cussion instruction. Master’s thesis, Virginia Polytechnic In-
stitute and State University, May 2007. (Cited on page 15.)

[Bha01] Pravin Bhagwat. Bluetooth: Technology for short-range wire-
less apps. IEEE Internet Computing, 5(3):96–103, 2001. (Cited
on page 21.)

[BTL+
07] Bernd Bruegge, Christoph Teschner, Peter Lachenmaier, Eva

Fenzl, Dominik Schmidt, and Simon Bierbaum. Pinocchio:
conducting a virtual symphony orchestra. In ACE ’07: Pro-
ceedings of the international conference on Advances in computer
entertainment technology, pages 294–295, New York, NY, USA,
2007. ACM Press. (Cited on pages 15 and 17.)

[Car94] L. Carpenter. Cinematrix, video imaging method and appa-
ratus for audience participation. us patents #5210604 (1993)
and #5365266 (1994), 1994. (Cited on pages 1 and 5.)

[Cin01] Cinematrix interactive entertainment system. http://www.

cinematrix.com, 2001. (Cited on pages 1, 5, 6, 7, and 44.)

[Eng07] Engadget. Wiimote used to navigate immersive 3d
environments. http://www.engadget.com/2007/04/05/

wiimote-used-to-navigate-immersive-3d-environments/,
2007. (Cited on page 15.)

[Ent06] Sony Computer Entertainment. Sixaxis wireless con-
troller. playstation.com. http://www.us.playstation.com/

PS3/Accessories/SCPH-98040, 2006. (Cited on page 15.)

[Fel02] Mark Feldmeier. Large group musical interaction using dis-
posable wireless motion sensors. Master’s thesis, Cambridge,
MA : MIT Media Laboratory, 2002. (Cited on pages 10

and 16.)

99

http://www.gamasutra.com/features/20061222/adams_01.shtml
http://www.gamasutra.com/features/20061222/adams_01.shtml
http://www.cinematrix.com
http://www.cinematrix.com
http://www.engadget.com/2007/04/05/wiimote-used-to-navigate-immersive-3d-environments/
http://www.engadget.com/2007/04/05/wiimote-used-to-navigate-immersive-3d-environments/
http://www.us.playstation.com/PS3/Accessories/SCPH-98040
http://www.us.playstation.com/PS3/Accessories/SCPH-98040

100 bibliography

[FP04] Mark Feldmeier and Joseph A. Paradiso. Giveaway wireless
sensors for large-group interaction. In CHI ’04: CHI ’04 ex-
tended abstracts on Human factors in computing systems, pages
1291–1292, New York, NY, USA, 2004. ACM Press. (Cited on
pages 1, 9, and 10.)

[Hac07] Hack a Wii. http://hackawii.com/, 2007. (Cited on page 27.)

[HL08] Sebastian Heise and Joern Loviscach. A versatile expressive
percussion instrument with game technology. pages 393–396.
IEEE ICME 2008, 2008. (Cited on pages 15 and 17.)

[Iva07] Tony Ivan. The "buzz" around social gaming.
next generation - interactive entertainment today.
http://www.next-gen.biz/index.php?option=com_

content\&task=view\&id=6568\&Itemid=2, July 2007.
(Cited on page 14.)

[Ken07] Carl Kenner. Glovepie. http://carl.kenner.googlepages.

com/glovepie, 2007. (Cited on pages 26 and 77.)

[Kha07] Yekaterina Kharitonova. Cra dmp student in computing
research. http://www.cs.cmu.edu/~ykk/week2.html, 2007.
(Cited on page 22.)

[Lee07] Johnny Chung Lee. Wiimote projects. http://www.cs.cmu.

edu/~johnny/projects/wii/, 2007. (Cited on page 19.)

[LKGM08] Hyun-Jean Lee, Hyungsin Kim, Gaurav Gupta, and Ali
Mazalek. Wiiarts: creating collaborative art experience with
Wiiremote interaction. In TEI ’08: Proceedings of the 2nd inter-
national conference on Tangible and embedded interaction, pages
33–36, New York, NY, USA, 2008. ACM. (Cited on pages 17

and 18.)

[MAPS02] Dan Maynes-Aminzade, Randy Pausch, and Steve Seitz.
Techniques for interactive audience participation. In SIG-
GRAPH ’02: ACM SIGGRAPH 2002 conference abstracts and
applications, pages 257–257, New York, NY, USA, 2002. ACM
Press. (Cited on pages 1, 7, 8, 9, and 44.)

[Nin07] Nintendo. Wii:inside the system. http://www.nintendo.

com/systemswii, 2007. (Cited on pages 11, 25, and 78.)

[Pee07] Brian Peek. Managed library for Nintendo’s Wiimote. http:
//www.brianpeek.com/, March 2007. (Cited on page 23.)

[Rou01] Richard Rouse. Game Design: Theory and Practice. Wordware
Publishing, 2001. (Cited on page 44.)

http://hackawii.com/
http://www.next-gen.biz/index.php?option=com_content\&task=view\&id=6568\&Itemid=2
http://www.next-gen.biz/index.php?option=com_content\&task=view\&id=6568\&Itemid=2
http://carl.kenner.googlepages.com/glovepie
http://carl.kenner.googlepages.com/glovepie
http://www.cs.cmu.edu/~ykk/week2.html
http://www.cs.cmu.edu/~johnny/projects/wii/
http://www.cs.cmu.edu/~johnny/projects/wii/
http://www.nintendo.com/systemswii
http://www.nintendo.com/systemswii
http://www.brianpeek.com/
http://www.brianpeek.com/

bibliography 101

[SGR07] Akihiko Shirai, Erik Geslin, and Simon Richir. Wiimedia:
motion analysis methods and applications using a consumer
video game controller. In Sandbox ’07: Proceedings of the 2007
ACM SIGGRAPH symposium on Video games, pages 133–140,
New York, NY, USA, 2007. ACM Press. (Cited on pages 27

and 28.)

[SK08] Hiroshi Suzuki and Masaki Kondo. Nintendo bigger on
Wii sales. http://www.financialpost.com/story.html?id=

690214, July 2008. (Cited on page 2.)

[Sof07] Softpedia. Dj Wiimote. http://news.softpedia.com/news/

DJ-Wiimote-45598.shtml, 2007. (Cited on page 15.)

[Wii06] WiiSpot. The Wiimote: Nitty gritty. http://wiispot.com/

the-wiimote-nitty-gritty/137/, June 2006. (Cited on
page 26.)

[Wii07a] WiiLi. Wiimote. http://www.wiili.org/index.php/Wiimote,
2007. (Cited on pages 11 and 24.)

[Wii07b] WiiLi. Wiimote drivers. http://www.wiili.org/index.php/
Wiimote_driver, 2007. (Cited on page 23.)

[Wii08] Wiire.org. Wii reverse engineered. http://www.wiire.org/

Chips/ADXL330, 2008. (Cited on page 24.)

[Wik07] Wikipedia. Wii remote. http://en.wikipedia.org/wiki/

Wii_Remote, August 2007. (Cited on pages 25 and 27.)

http://www.financialpost.com/story.html?id=690214
http://www.financialpost.com/story.html?id=690214
http://news.softpedia.com/news/DJ-Wiimote-45598.shtml
http://news.softpedia.com/news/DJ-Wiimote-45598.shtml
http://wiispot.com/the-wiimote-nitty-gritty/137/
http://wiispot.com/the-wiimote-nitty-gritty/137/
http://www.wiili.org/index.php/Wiimote
http://www.wiili.org/index.php/Wiimote_driver
http://www.wiili.org/index.php/Wiimote_driver
http://www.wiire.org/Chips/ADXL330
http://www.wiire.org/Chips/ADXL330
http://en.wikipedia.org/wiki/Wii_Remote
http://en.wikipedia.org/wiki/Wii_Remote

	Dedication
	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	List of Listings
	Acronyms
	1 Introduction
	1.1 Large Group Gaming
	1.2 Motivation
	1.3 System Overview

	2 Background
	2.1 Related Work
	2.1.1 Cinematrix Interactive Entertainment System
	2.1.2 Maynes-Aminzade's Work
	2.1.3 Disposable Wireless Device for Group Musical Interaction

	2.2 Wii Remote
	2.2.1 Nintendo Wii
	2.2.2 Capability
	2.2.3 Wii Remote in Commercial Games
	2.2.4 Wii remote as an input device

	2.3 Projects using Wii Remote
	2.3.1 Percussion project by Belcher
	2.3.2 Expressive Percussion Instrument
	2.3.3 Pinocchio: Conducting a virtual symphony orchestra
	2.3.4 WiiArts
	2.3.5 Johnny Chung Lee's Wiimote Projects

	3 Technical Issues
	3.1 Bluetooth Limitation
	3.2 Connecting More Wii Remotes
	3.2.1 Pairing the Wii Remotes
	3.2.2 Wiimote Programming Library

	3.3 Wii Remote Motion and Tilt Sensor
	3.4 Wii Remote Infrared Sensor
	3.5 Sensor Bar Modification
	3.6 System Architecture
	3.6.1 Input Client
	3.6.2 Game Server
	3.6.3 Stage Installation

	4 Game and Interaction Design
	4.1 Game Idea
	4.2 Target Audience
	4.3 Game Mechanic
	4.4 The Game Objects
	4.4.1 The Game Character
	4.4.2 Game Item and Area
	4.4.3 The Game Objects Proportion and Visualization

	4.5 Interaction Design using Wii Remote
	4.5.1 Pointing
	4.5.2 Tilting
	4.5.3 Gamepad

	4.6 Group Mode
	4.7 Other Game Variations

	5 Implementation
	5.1 Input Client
	5.1.1 Hardware Specification
	5.1.2 Software Specification
	5.1.3 Implemented Features
	5.1.4 Connecting Wii Remotes
	5.1.5 Wii Remote and Input Client Identification
	5.1.6 Network Connection

	5.2 Game Server
	5.2.1 Hardware Specification
	5.2.2 Software Specification
	5.2.3 Implemented Features
	5.2.4 Game Objects
	5.2.5 Game Server Modules

	6 Testing and Evaluation
	6.1 Testing Goal
	6.2 Methodology
	6.3 Testing Environment
	6.3.1 Audience
	6.3.2 Hardware Settings
	6.3.3 Input Clients Set Up

	6.4 Testing the Input Client
	6.4.1 Pairing Several Wii Remotes
	6.4.2 Displaying the Wii Remote Data

	6.5 Testing the Game Server
	6.6 Play Test
	6.6.1 Input Method Pointing
	6.6.2 Input Method Tilting
	6.6.3 Input Method Gamepad

	6.7 Analyzing the Problems
	6.7.1 Unsteady Cursor Movement
	6.7.2 Game Design Aspect

	6.8 Conclusion

	7 Conclusion
	7.1 Experiment Results
	7.2 Future Improvements

	A Appendix: Implementation and Source Codes
	A.1 Pairing a Wiimote with Computer
	A.1.1 Microsoft Windows Bluetooth Software
	A.1.2 Bluesoleil Bluetooth software

	A.2 Compiling the Project Source Codes
	A.2.1 Downloading the Files
	A.2.2 Additional Libraries

	A.3 Brian Peek Wiimote Library
	A.3.1 Testing the Connected Wii Remotes
	A.3.2 Connecting Wii Remotes
	A.3.3 Reading Wii Remote Data
	A.3.4 Disconnecting Wii Remotes

	Bibliography

